Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Jun;13(5):401-14.
doi: 10.1016/j.cardfail.2007.01.003.

Targeting myocardial beta-adrenergic receptor signaling and calcium cycling for heart failure gene therapy

Affiliations
Review

Targeting myocardial beta-adrenergic receptor signaling and calcium cycling for heart failure gene therapy

Sven T Pleger et al. J Card Fail. 2007 Jun.

Abstract

Heart failure (HF) is a leading cause of morbidity and mortality in Western countries and projections reveal that HF incidence in the coming years will rise significantly because of an aging population. Pharmacologic therapy has considerably improved HF treatment during the last 2 decades, but fails to rescue failing myocardium and to increase global cardiac function. Therefore, novel therapeutic approaches to target the underlying molecular defects of ventricular dysfunction and to increase the outcome of patients in HF are needed. Failing myocardium generally exhibits distinct changes in beta-adrenergic receptor (betaAR) signaling and intracellular Ca2+-handling providing opportunities for research. Recent advances in transgenic and gene therapy techniques have presented novel therapeutic strategies to alter myocardial function and to target both betaAR signaling and Ca2+-cycling. In this review, we will discuss functional alterations of the betaAR system and Ca2+-handling in HF as well as corresponding therapeutic strategies. We will then focus on recent in vivo gene therapy strategies using the targeted inhibition of the betaAR kinase (betaARK1 or GRK2) and the restoration of S100A1 protein expression to support the injured heart and to reverse or prevent HF.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms