Current role and future perspectives of magnetic resonance spectroscopy in radiation oncology for prostate cancer
- PMID: 17603627
- PMCID: PMC1899254
- DOI: 10.1593/neo.07277
Current role and future perspectives of magnetic resonance spectroscopy in radiation oncology for prostate cancer
Abstract
Prostatic neoplasms are not uniformly distributed within the prostate volume. With recent developments in three-dimensional intensity-modulated and image-guided radiation therapy, it is possible to treat different volumes within the prostate to different thresholds of doses. This approach has the potential to adapt the dose to the biologic aggressiveness of various clusters of tumor cells within the gland. The definition of tumor burden volume in prostate cancer can be facilitated by the use of magnetic resonance spectroscopy (MRS). The increasing sensitivity and specificity of MRS to the prostate is causing new interest in its potential role in the definition of target subvolumes at higher risk of failure following radical radiotherapy. Prostate MRS might also play a role as a noninvasive predictive factor for tumor response and treatment outcome. We review the use of MRS in radiation therapy for prostate cancer by evaluating its accuracy in the classification of aggressive cancer regions and target definition; its current role in the radiotherapy planning process, with special interest in technical issues behind the successful inclusion of MRS in clinical use; and available early experiences as a prognostic tool.
References
-
- Seshadri M, Spernyak JA, Maiery PG, Cheney RT, Mazurchuk R, Bellnier DA. Visualizing the acute effects of vascular-targeted therapy in vivo using intravital microscopy and magnetic resonance imaging: correlation with endothelial apoptosis, cytokine induction, and treatment outcome. Neoplasia. 2007;9(2):128–135. - PMC - PubMed
-
- McPhail LD, McIntyre DJ, Ludwig C, Kestell P, Griffiths JR, Kelland LR, Robinson SP. Rat tumor response to the vasculardisrupting agent 5,6-dimethylxanthenone-4-acetic acid as measured by dynamic contrast-enhanced magnetic resonance imaging, plasma 5-hydroxyindoleacetic acid levels, and tumor necrosis. Neoplasia. 2006;8(3):199–206. - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical