Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Summer;20(2):276-87.
doi: 10.1089/vim.2006.0096.

T cell dysfunction by hepatitis C virus core protein involves PD-1/PDL-1 signaling

Affiliations

T cell dysfunction by hepatitis C virus core protein involves PD-1/PDL-1 signaling

Zhi Q Yao et al. Viral Immunol. 2007 Summer.

Abstract

Reports have shown that a negative T cell costimulatory pathway mediated by PD-1 (programmed death-1) and PDL-1 (programmed death ligand-1) is associated with T cell exhaustion and persistent viral infection. Persistent hepatitis C virus (HCV) infection in humans is also characterized by impaired T lymphocyte function, but the role of the PD-1 and PDL-1 pathway in HCV infection is unknown. Here we report that T cells isolated from chronically HCV-infected patients express significantly higher levels of PD-1 when compared with healthy donors. In addition, PD-1 and PDL-1 expression is upregulated on healthy donor T cells exposed to HCV core, a nucleocapsid protein that is immunosuppressive; upregulation of PD-1 is mediated through interaction of HCV core with the complement receptor, gC1qR. Importantly, T cell functions that are dysregulated by HCV core, including T cell activation, proliferation, and apoptosis, can be restored by blocking PD-1 and PDL-1 engagement. Our results indicate that HCV core can upregulate a key negative T cell signaling pathway associated with viral persistence and highly expressed on the T cells of persistently infected individuals. This upregulation of the PD-1 and PDL-1 pathway in humans represents a novel and perhaps common mechanism by which a virus usurps host machinery to facilitate persistence.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources