Estrogen positive feedback to gonadotropin-releasing hormone (GnRH) neurons in the rodent: the case for the rostral periventricular area of the third ventricle (RP3V)
- PMID: 17604108
- PMCID: PMC6116895
- DOI: 10.1016/j.brainresrev.2007.05.006
Estrogen positive feedback to gonadotropin-releasing hormone (GnRH) neurons in the rodent: the case for the rostral periventricular area of the third ventricle (RP3V)
Abstract
Increasing levels of circulating estradiol during the follicular phase of the ovarian cycle act on the brain to trigger a sudden and massive release of gonadotropin-releasing hormone (GnRH) that evokes the pituitary luteinizing hormone surge responsible for ovulation in mammals. The mechanisms through which estrogen is able to exert this potent "positive feedback" influence upon the GnRH neurons are beginning to be unravelled. Recent studies utilizing mouse models with global and cell-specific deletions of the different estrogen receptors (ERs) have shown that estrogen positive feedback is likely to use an indirect pathway involving the modulation of ERalpha-expressing neurons that project to GnRH neurons. Conventional tract tracing studies in rats, and experiments involving conditional pseudorabies virus tract tracing from GnRH neurons in the transgenic mouse, indicate that the dominant populations of ERalpha-expressing neuronal afferents to GnRH neurons reside in the anteroventral periventricular, median preoptic and periventricular preoptic nuclei. Together these estrogen-sensitive afferents to GnRH neurons form a periventricular continuum that can be referred to as rostral periventricular area of the third ventricle (RP3V) neurons. The neurochemical identity of some RP3V neurons has been determined and there is mounting evidence for important roles of glutamate, GABA, kisspeptin and neurotensin-expressing RP3V neurons in estrogen positive feedback. The definition of the key cluster of estrogen-sensitive neurons responsible for activating the GnRH neurons to evoke the GnRH surge (and ovulation) should be of substantial value to on-going efforts to understand the molecular and cellular basis of the estrogen positive feedback mechanism.
Figures




Similar articles
-
Dominant Neuropeptide Cotransmission in Kisspeptin-GABA Regulation of GnRH Neuron Firing Driving Ovulation.J Neurosci. 2018 Jul 11;38(28):6310-6322. doi: 10.1523/JNEUROSCI.0658-18.2018. Epub 2018 Jun 13. J Neurosci. 2018. PMID: 29899026 Free PMC article.
-
Definition of estrogen receptor pathway critical for estrogen positive feedback to gonadotropin-releasing hormone neurons and fertility.Neuron. 2006 Oct 19;52(2):271-80. doi: 10.1016/j.neuron.2006.07.023. Neuron. 2006. PMID: 17046690 Free PMC article.
-
Postnatal development of an estradiol-kisspeptin positive feedback mechanism implicated in puberty onset.Endocrinology. 2009 Jul;150(7):3214-20. doi: 10.1210/en.2008-1733. Epub 2009 Mar 19. Endocrinology. 2009. PMID: 19299459 Free PMC article.
-
Kisspeptin Neurons and Estrogen-Estrogen Receptor α Signaling: Unraveling the Mystery of Steroid Feedback System Regulating Mammalian Reproduction.Int J Mol Sci. 2021 Aug 26;22(17):9229. doi: 10.3390/ijms22179229. Int J Mol Sci. 2021. PMID: 34502135 Free PMC article. Review.
-
Kisspeptin-neuron control of LH pulsatility and ovulation.Front Endocrinol (Lausanne). 2022 Nov 21;13:951938. doi: 10.3389/fendo.2022.951938. eCollection 2022. Front Endocrinol (Lausanne). 2022. PMID: 36479214 Free PMC article. Review.
Cited by
-
60 YEARS OF NEUROENDOCRINOLOGY: The hypothalamo-prolactin axis.J Endocrinol. 2015 Aug;226(2):T101-22. doi: 10.1530/JOE-15-0213. Epub 2015 Jun 22. J Endocrinol. 2015. PMID: 26101377 Free PMC article. Review.
-
Evolutionary Insights into the Steroid Sensitive kiss1 and kiss2 Neurons in the Vertebrate Brain.Front Endocrinol (Lausanne). 2012 Feb 22;3:28. doi: 10.3389/fendo.2012.00028. eCollection 2012. Front Endocrinol (Lausanne). 2012. PMID: 22654859 Free PMC article.
-
Sexually dimorphic testosterone secretion in prenatal and neonatal mice is independent of kisspeptin-Kiss1r and GnRH signaling.Endocrinology. 2012 Feb;153(2):782-93. doi: 10.1210/en.2011-1838. Epub 2011 Dec 27. Endocrinology. 2012. PMID: 22202164 Free PMC article.
-
An analogue of the Prolactin Releasing Peptide reduces obesity and promotes adult neurogenesis.EMBO Rep. 2024 Jan;25(1):351-377. doi: 10.1038/s44319-023-00016-2. Epub 2023 Dec 20. EMBO Rep. 2024. PMID: 38177913 Free PMC article.
-
Neuroendocrine control of gonadotropin-releasing hormone: Pulsatile and surge modes of secretion.J Neuroendocrinol. 2022 May;34(5):e13094. doi: 10.1111/jne.13094. Epub 2022 Feb 2. J Neuroendocrinol. 2022. PMID: 35107859 Free PMC article. Review.
References
-
- Akema T, Praputpittaya C, Kimura F. Effects of preoptic microinjection of neurotensin on luteinizing hormone secretion in unanesthetized ovariectomized rats with or without estrogen priming. Neuroendocrinology. 1987;46:345–349. - PubMed
-
- Alexander MJ, Leeman SE. Estrogen-inducible neurotensin immunoreactivity in the preoptic area of the female rat. Journal of Comparative Neurology. 1994;345:496–509. - PubMed
-
- Alexander MJ, Mahoney PD, Ferris CG, Carraway RE, Leeman SE. Evidence that neurotensin participates in the central regulation of the preovulatory surge of luteinizing hormone in the rat. Endocrinology. 1989;124:783–788. - PubMed
-
- Blache D, Fabre-Nys CJ, Venier G. Ventromedial hypothalamus as a target for oestradiol action on proceptivity, receptivity and luteinizing hormone surge of the ewe. Brain Research. 1991;546:241–249. - PubMed
-
- Bloch GJ, Kurth SM, Akesson TR, Micevych PE. Estrogen-concentrating cells within cell groups of the medial preoptic area: sex differences and co-localization with galanin- immunoreactive cells. Brain Research. 1992;595:301–308. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources