The influences of diet and exercise on mental health through hormesis
- PMID: 17604236
- PMCID: PMC3225189
- DOI: 10.1016/j.arr.2007.04.003
The influences of diet and exercise on mental health through hormesis
Abstract
It is likely that the capacity of the brain to remain healthy during aging depends upon its ability to adapt and nurture in response to environmental challenges. In these terms, main principles involved in hormesis can be also applied to understand relationships at a higher level of complexity such as those existing between the CNS and the environment. This review emphasizes the ability of diet, exercise, and other lifestyle adaptations to modulate brain function. Exercise and diet are discussed in relationship to their aptitude to impact systems that sustain synaptic plasticity and mental health, and are therefore important for combating the effects of aging. Mechanisms that interface energy metabolism and synaptic plasticity are discussed, as these are the frameworks for the actions of cellular stress on cognitive function. In particular, neurotrophins are emerging as main factors in the equation that may connect lifestyle factors and mental health.
Figures



References
-
- Adams PB, Lawson S, Sanigorski A, Sinclair AJ. Arachidonic acid to eicosapentaenoic acid ratio in blood correlates positively with clinical symptoms of depression. Lipids. 1996;31(Suppl):S157–161. - PubMed
-
- Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185–188. - PubMed
-
- Birch EE, Hoffman DR, Uauy R, Birch DG, Prestidge C. Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants. Pediatr Res. 1998;44:201–209. - PubMed
-
- Blanquet PR, Lamour Y. Brain-derived neurotrophic factor increases Ca2+/calmodulin-dependent protein kinase 2 activity in hippocampus. J Biol Chem. 1997;272:24133–24136. - PubMed
-
- Blanquet PR, Mariani J, Derer P. A calcium/calmodulin kinase pathway connects brain-derived neurotrophic factor to the cyclic AMP-responsive transcription factor in the rat hippocampus. Neuroscience. 2003;118:477–490. - PubMed