Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug 1;131(1):84-91.
doi: 10.1016/j.jbiotec.2007.05.021. Epub 2007 May 31.

A highly stable cambialistic-superoxide dismutase from Antrodia camphorata: expression in yeast and enzyme properties

Affiliations

A highly stable cambialistic-superoxide dismutase from Antrodia camphorata: expression in yeast and enzyme properties

Yi-Jen Liau et al. J Biotechnol. .

Abstract

A cDNA encoding a putative superoxide dismutase (SOD) was identified in expressed sequence tags of Antrodia camphorata, a medicinal mushroom found only in Taiwan. The deduced protein was aligned with Mn-SODs and Fe-SODs from other organisms, this SOD showed greater homology to Mn-SOD. Functional A. camphorata SOD protein was overexpressed in yeast and purified. The purified enzyme showed two active forms on a 12.5% native PAGE, a dimer and a monomer. The dimeric protein's half-life of deactivation at 80 degrees C was 7 min, and its thermal inactivation rate constant K(d) was 9.87 x 10(-2)min(-1). The enzyme was stable in a broad pH range from 5-11; in the presence of 0.4M imidazole and 2% SDS. The atomic absorption spectrometric assay showed that 1.0 atom of manganese/iron (9:1) was present in each SOD subunit. The high stability of the enzyme make it better suited than other cambialistic-SODs for use in cosmetics. The SOD also documents its future utility in developing anti-inflammatory agent and in the treatment of chronic diseases.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources