Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul 31;46(30):8872-8.
doi: 10.1021/bi700564b. Epub 2007 Jul 3.

Na+-pyrophosphatase: a novel primary sodium pump

Affiliations

Na+-pyrophosphatase: a novel primary sodium pump

Anssi M Malinen et al. Biochemistry. .

Abstract

Membrane-bound pyrophosphatase (PPase) is commonly believed to couple pyrophosphate (PPi) hydrolysis to H+ transport across the membrane. Here, we demonstrate that two newly isolated bacterial membrane PPases from the mesophile Methanosarcina mazei (Mm-PPase) and the moderate thermophile Moorella thermoacetica and a previously described PPase from the hyperthermophilic bacterium Thermotoga maritima catalyze Na+ rather than H+ transport into Escherichia coli inner membrane vesicles (IMV). When assayed in uncoupled IMV, the three PPases exhibit an absolute requirement for Na+ but display the highest hydrolyzing activity in the presence of both Na+ and K+. Steady-state kinetic analysis of PPi hydrolysis by Mm-PPase revealed two Na+ binding sites. One of these sites can also bind K+, resulting in a 10-fold increase in the affinity of the other site for Na+ and a 2-fold increase in maximal velocity. PPi-driven 22Na+ transport into IMV containing Mm-PPase was unaffected by the protonophore carbonyl cyanide m-chlorophenylhydrazone, inhibited by the Na+ ionophore monensin, and activated by the K+ ionophore valinomycin. The Na+ transport was accompanied by the generation of a positive inside membrane potential as reported by Oxonol VI. These findings define Na+-dependent PPases as electrogenic Na+ pumps. Phylogenetic analysis suggests that ancient gene duplication preceded the split of Na+- and H+-PPases.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources