Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Jul;48(7):1096-103.
doi: 10.2967/jnumed.106.038596.

Comparison of contrast-enhanced MRI with (18)F-FDG PET/201Tl SPECT in dysfunctional myocardium: relation to early functional outcome after surgical revascularization in chronic ischemic heart disease

Affiliations
Free article
Comparative Study

Comparison of contrast-enhanced MRI with (18)F-FDG PET/201Tl SPECT in dysfunctional myocardium: relation to early functional outcome after surgical revascularization in chronic ischemic heart disease

Yen-Wen Wu et al. J Nucl Med. 2007 Jul.
Free article

Erratum in

  • J Nucl Med. 2007 Nov;48(11):1789

Abstract

Revascularization of viable myocardial segments has been shown to improve left ventricular (LV) function and long-term prognosis; however, the surgical risk is comparatively higher in patients with a low ejection fraction (EF). We compared contrast-enhanced MRI with (18)F-FDG PET/(201)Tl SPECT for myocardial viability and prediction of early functional outcome in patients with chronic coronary artery disease (CAD).

Methods: Forty-one patients with chronic CAD and LV dysfunction (mean age +/- SD, 66 +/- 10 y; 32 men; mean EF +/- SD, 38% +/- 13%) referred for (18)F-FDG PET, (201)Tl-SPECT and MRI within 2 wk were included. Twenty-nine subjects underwent coronary artery bypass grafting (CABG), and LV function was reassessed by MRI before discharge (17 +/- 7 d after surgery). Two were excluded from outcome analysis (1 death due to sepsis; 1 perioperative myocardial infarction). The extent of viable myocardium by (18)F-FDG PET/(201)Tl SPECT was defined by the metabolism-perfusion mismatch or ischemia, in comparison with the extent of delayed enhancement (DE) on MRI in a 17-segment model. Segmental functional recovery was defined as improvement in the wall motion score of > or =1 on a 4-point scale. EF and LV volume change were used as global functional outcome.

Results: Three hundred ninety-four dysfunctional segments were compared, and the extent of DE on MRI correlated negatively with the viability on (18)F-FDG PET. Of 252 dysfunctional segments that were successfully revascularized, the sensitivity, specificity, positive predictive value, and negative predictive value of PET/SPECT were 60.2%, 98.7%, 76.6%, and 96.7% and of MRI were 92.2%, 44.9%, 72.4%, and 78.6% using the cutoff value of 50% DE on MRI, without significant differences in overall accuracies. In 18 subjects who underwent isolated CABG, improvement of EF (> or =5%) and reverse LV remodeling (> or =10% LV size reduction) was best predicted by the no DE on MRI, and patients with substantial nonviable myocardium on (18)F-FDG/SPECT predicted a poor early functional outcome (all P < 0.001).

Conclusion: Accurate prediction of early functional outcome by PET/SPECT and contrast-enhanced MRI is possible.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources