Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul 3;2007(393):pe37.
doi: 10.1126/stke.3932007pe37.

The surprising catch of a voltage-gated potassium channel in a neuronal SNARE

Affiliations

The surprising catch of a voltage-gated potassium channel in a neuronal SNARE

Durga P Mohapatra et al. Sci STKE. .

Abstract

Among ion channels, voltage-gated calcium channels have been considered unique in their ability to mediate signaling events independent of the flow of ions through their pore. A voltage-gated potassium channel termed Kv2.1 has been identified as playing a role remarkably similar to one ion-independent function of calcium channels, facilitating regulated exocytosis through a direct interaction with a t-SNARE [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor] component of the vesicle release machinery. Kv2.1 overexpression enhances depolarization-induced secretion from the neuroendocrine-like PC12 cell line, and a nonconducting Kv2.1 mutant can accomplish the same feat. Kv2.1 interacts directly with syntaxin 1A, a plasma membrane t-SNARE component of the vesicle docking and fusion apparatus. Deletion of the syntaxin 1A-binding segment from Kv2.1 abolishes its ability to promote vesicle release, supporting a mechanism whereby Kv2.1 presumably transfers voltage-dependent conformational changes induced by membrane depolarization to interacting t-SNAREs to affect exocytosis. Kv2.1, a major mediator of electrical events in central neurons, cardiac and smooth muscle, and pancreatic beta cells, must now also be recognized as a physical mediator of secretion. That Kv2.1 is phosphorylated at numerous sites within the syntaxin 1A binding segment raises the possibility that its role in secretion may be dynamically regulated by diverse signaling events.

PubMed Disclaimer