Biological mechanisms of bone and cartilage remodelling--genomic perspective
- PMID: 17609952
- PMCID: PMC2266663
- DOI: 10.1007/s00264-007-0408-8
Biological mechanisms of bone and cartilage remodelling--genomic perspective
Abstract
Rapid advancements in the field of genomics, enabled by the achievements of the Human Genome Project and the complete decoding of the human genome, have opened an unimaginable set of opportunities for scientists to further unveil delicate mechanisms underlying the functional homeostasis of biological systems. The trend of applying whole-genome analysis techniques has also contributed to a better understanding of physiological and pathological processes involved in homeostasis of bone and cartilage tissues. Gene expression profiling studies have yielded novel insights into the complex interplay of osteoblast and osteoclast regulation, as well as paracrine and endocrine control of bone and cartilage remodelling. Mechanisms of new bone formation responsible for fracture healing and distraction osteogenesis, as well as healing of joint cartilage defects, have also been extensively studied. Microarray experiments have been especially useful in studying pathological processes involved in diseases such as osteoporosis or bone tumours. Existing results show that microarrays hold great promise in areas such as identification of targets for novel therapies or development of new biomarkers and classifiers in skeletal diseases.
Les progrès rapides réalisés dans le cadre de la génétique nous ont permis d’achever le projet de génome humain et de compléter son décodage, ceci nous a permis de mieux comprendre également la physiologie et la pathologie de l’homéostasie des tissus osseux cartilagineux, l’expression des gênes interférant sur la régulation des ostéoclastes ou du remodelage osseux par l’intermédiaire d’un contrôle paracrine et endocrine. De même, en ce qui concerne les mécanismes responsables de la consolidation des fractures, de l’ostéogénèse en distraction, de la cicatrisation des lésions cartilagineuses. Ces classifications et ces expérimentations sont également utiles pour comprendre les processus pathologiques tel que l’ostéoporose ou les tumeurs osseuses. Ceci permettra de mettre en route de nouvelles thérapeutiques ou de développer de nouveaux marqueurs afin de pouvoir classer les lésions osseuses.
Figures

Similar articles
-
Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration.Birth Defects Res C Embryo Today. 2013 Sep;99(3):170-91. doi: 10.1002/bdrc.21047. Birth Defects Res C Embryo Today. 2013. PMID: 24078495 Review.
-
[Repair and formation of cartilage and bone: are they possible?].Nihon Yakurigaku Zasshi. 2000 Sep;116(3):141-8. doi: 10.1254/fpj.116.141. Nihon Yakurigaku Zasshi. 2000. PMID: 11031743 Review. Japanese.
-
[Cartilage formation and regeneration by mechanical stress].Clin Calcium. 2006 Nov;16(11):1899-4. Clin Calcium. 2006. PMID: 17079859 Review. Japanese.
-
[How is bone remodeling regulated?].Nihon Rinsho. 2009 May;67(5):897-902. Nihon Rinsho. 2009. PMID: 19432106 Review. Japanese.
-
The molecular genetics of bone formation: implications for therapeutic interventions in bone disorders.Am J Pharmacogenomics. 2001;1(3):175-87. doi: 10.2165/00129785-200101030-00003. Am J Pharmacogenomics. 2001. PMID: 12083966 Review.
Cited by
-
Effect of rat brain tissue extracts on osteoblast proliferation and differentiation.Int Orthop. 2012 Apr;36(4):887-93. doi: 10.1007/s00264-011-1423-3. Epub 2011 Dec 9. Int Orthop. 2012. PMID: 22159657 Free PMC article.
-
Comparative characteristics of porous bioceramics for an osteogenic response in vitro and in vivo.PLoS One. 2013 Dec 31;8(12):e84272. doi: 10.1371/journal.pone.0084272. eCollection 2013. PLoS One. 2013. PMID: 24391927 Free PMC article.
-
The clinical use of bone morphogenetic proteins revisited: a novel biocompatible carrier device OSTEOGROW for bone healing.Int Orthop. 2014 Mar;38(3):635-47. doi: 10.1007/s00264-013-2201-1. Epub 2013 Dec 19. Int Orthop. 2014. PMID: 24352822 Free PMC article. Review.
-
Abnormal expression of chondroitin sulphate N-acetylgalactosaminyltransferase 1 and Hapln-1 in cartilage with Kashin-Beck disease and primary osteoarthritis.Int Orthop. 2013 Oct;37(10):2051-9. doi: 10.1007/s00264-013-1937-y. Epub 2013 Jun 8. Int Orthop. 2013. PMID: 23748413 Free PMC article.
-
Proteomic analysis of mineralising osteoblasts identifies novel genes related to bone matrix mineralisation.Int Orthop. 2011 Mar;35(3):447-51. doi: 10.1007/s00264-010-1076-7. Epub 2010 Jun 18. Int Orthop. 2011. PMID: 20556378 Free PMC article.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11243467', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11243467/'}]}
- Beck GR Jr, Zerler B, Moran E (2001) Gene array analysis of osteoblast differentiation. Cell Growth Differ 12:61–83 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1074/jbc.M200434200', 'is_inner': False, 'url': 'https://doi.org/10.1074/jbc.m200434200'}, {'type': 'PubMed', 'value': '11923298', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11923298/'}]}
- Cappellen D, Luong-Nguyen NH, Bongiovanni S, Grenet O, Wanke C, Susa M (2002) Transcriptional program of mouse osteoclast differentiation governed by the macrophage colony-stimulating factor and the ligand for the receptor activator of NFkappa B. J Biol Chem 277:21971–21982 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.bone.2003.12.027', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.bone.2003.12.027'}, {'type': 'PubMed', 'value': '15121017', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15121017/'}]}
- Carvalho RS, Einhorn TA, Lehmann W, Edgar C, Al-Yamani A, Apazidis A, Pacicca D, Clemens TL, Gerstenfeld LC (2004) The role of angiogenesis in a murine tibial model of distraction osteogenesis. Bone 34:849–861 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.lfs.2004.03.028', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.lfs.2004.03.028'}, {'type': 'PubMed', 'value': '15312749', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15312749/'}]}
- Chandar N, Logan D, Szajkovics A, Harmston W (2004) Gene expression changes accompanying p53 activity during estrogen treatment of osteoblasts. Life Sci 75:2045–2055 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1186/1471-2407-6-237', 'is_inner': False, 'url': 'https://doi.org/10.1186/1471-2407-6-237'}, {'type': 'PMC', 'value': 'PMC1609181', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC1609181/'}, {'type': 'PubMed', 'value': '17022822', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/17022822/'}]}
- Dalla-Torre CA, Yoshimoto M, Lee CH, Joshua AM, de Toledo SR, Petrilli AS, Andrade JA, Chilton-MacNeill S, Zielenska M, Squire JA (2006) Effects of THBS3, SPARC and SPP1 expression on biological behavior and survival in patients with osteosarcoma. BMC Cancer 6:237 - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources