Genetic algorithm matched filter optimization for automated detection of blood vessels from digital retinal images
- PMID: 17610985
- DOI: 10.1016/j.cmpb.2007.05.012
Genetic algorithm matched filter optimization for automated detection of blood vessels from digital retinal images
Abstract
Due to the importance of the matched filter in the automated detection of blood vessels in digital retinal images, improving its response is highly desirable. This filter may vary in many ways depending on the parameters that govern its response. In this paper, new parameters to optimize the sensitivity of the matched filter are found using genetic algorithms on the test set of the DRIVE databases. The area under the receiver operating curve (ROC) is used as a fitness function for the genetic algorithm. To evaluate the improved matched filter, the maximum average accuracy (MAA) is calculated to be 0.9422 and the average area under ROC is 0.9582.
Similar articles
-
Optic disc detection from normalized digital fundus images by means of a vessels' direction matched filter.IEEE Trans Med Imaging. 2008 Jan;27(1):11-8. doi: 10.1109/TMI.2007.900326. IEEE Trans Med Imaging. 2008. PMID: 18270057
-
Detection of blood vessels in ophthalmoscope images using MF/ant (matched filter/ant colony) algorithm.Comput Methods Programs Biomed. 2009 Nov;96(2):85-95. doi: 10.1016/j.cmpb.2009.04.005. Epub 2009 May 6. Comput Methods Programs Biomed. 2009. PMID: 19419790
-
Retinal blood vessel segmentation using line operators and support vector classification.IEEE Trans Med Imaging. 2007 Oct;26(10):1357-65. doi: 10.1109/TMI.2007.898551. IEEE Trans Med Imaging. 2007. PMID: 17948726
-
An overview and performance evaluation of classification-based least squares trained filters.IEEE Trans Image Process. 2008 Oct;17(10):1772-82. doi: 10.1109/TIP.2008.2002162. IEEE Trans Image Process. 2008. PMID: 18784026 Review.
-
Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review.Comput Med Imaging Graph. 2013 Oct-Dec;37(7-8):581-96. doi: 10.1016/j.compmedimag.2013.09.005. Epub 2013 Sep 27. Comput Med Imaging Graph. 2013. PMID: 24139134 Review.
Cited by
-
Local-Sensitive Connectivity Filter (LS-CF): A Post-Processing Unsupervised Improvement of the Frangi, Hessian and Vesselness Filters for Multimodal Vessel Segmentation.J Imaging. 2022 Oct 21;8(10):291. doi: 10.3390/jimaging8100291. J Imaging. 2022. PMID: 36286385 Free PMC article.
-
Blood vessel extraction of diabetic retinopathy using optimized enhanced images and matched filter.J Med Imaging (Bellingham). 2016 Oct;3(4):044003. doi: 10.1117/1.JMI.3.4.044003. Epub 2016 Nov 30. J Med Imaging (Bellingham). 2016. PMID: 27981066 Free PMC article.
-
Fast retinal vessel detection and measurement using wavelets and edge location refinement.PLoS One. 2012;7(3):e32435. doi: 10.1371/journal.pone.0032435. Epub 2012 Mar 12. PLoS One. 2012. PMID: 22427837 Free PMC article.
-
Particle Swarm Optimization and Salp Swarm Algorithm for the Segmentation of Diabetic Retinal Blood Vessel Images.Comput Intell Neurosci. 2022 Aug 23;2022:1936482. doi: 10.1155/2022/1936482. eCollection 2022. Comput Intell Neurosci. 2022. PMID: 36052032 Free PMC article.
-
Analysis of Vessel Segmentation Based on Various Enhancement Techniques for Improvement of Vessel Intensity Profile.Comput Intell Neurosci. 2022 Jun 28;2022:7086632. doi: 10.1155/2022/7086632. eCollection 2022. Comput Intell Neurosci. 2022. PMID: 35800676 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources