Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;134(15):2881-7.
doi: 10.1242/dev.002329. Epub 2007 Jul 4.

Midbrain dopaminergic neurogenesis and behavioural recovery in a salamander lesion-induced regeneration model

Affiliations

Midbrain dopaminergic neurogenesis and behavioural recovery in a salamander lesion-induced regeneration model

Clare L Parish et al. Development. 2007 Aug.

Abstract

Death and lack of functional regeneration of midbrain dopaminergic (DA) neurons, decreased DA input in the target striatum and movement anomalies characterise Parkinson's disease (PD). There is currently no cure for PD. One way to promote recovery would be to induce or enhance DA neurogenesis. Whether DA neurogenesis occurs in the adult midbrain is a matter of debate. Here, we describe the creation of a salamander 6-hydroxydopamine model of PD to examine midbrain DA regeneration. We demonstrate a robust and complete regeneration of the mesencephalic and diencephalic DA system after elimination of DA neurons. Regeneration is contributed by DA neurogenesis, leads to histological restoration, and to full recovery of motor behaviour. Molecular analyses of the temporal expression pattern of DA determinants indicate that the regenerating DA neurons mature along a similar developmental program as their mammalian counterparts during embryogenesis. We also find that the adult salamander midbrain can reactivate radial glia-like ependymoglia cells that proliferate. The salamander model provides insights into the mechanisms of DA regeneration/neurogenesis and may contribute to the development of novel regenerative strategies for the mammalian brain.

PubMed Disclaimer

Publication types