Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;20(2):187-92.

Ethyl pyruvate induces necrosis-to-apoptosis switch and inhibits high mobility group box protein 1 release in A549 lung adenocarcinoma cells

Affiliations
  • PMID: 17611636

Ethyl pyruvate induces necrosis-to-apoptosis switch and inhibits high mobility group box protein 1 release in A549 lung adenocarcinoma cells

Sung-Chul Lim et al. Int J Mol Med. 2007 Aug.

Abstract

Ethyl pyruvate (EP), a stable lipophilic pyruvate derivative, has been shown to exert anti-inflammatory activities through inhibiting the expression of various pro-inflammatory mediators as well as circulating levels of high mobility group box protein 1 (HMGB1) in a variety of in vitro and in vivo model systems. Necrotic cell death triggers an inflammatory response through release of HMGB1 in the extracellular space due to the membrane rupture. In an effort to better understand the pharmacological action mechanism that could explain the anti-inflammatory properties of EP, we examined the effects of EP on necrotic cell death in A549 lung adenocarcinoma cells in response to glucose deprivation (GD), a common characteristic of the tumor microenvironment. Here we show that EP prevented GD-induced necrosis and HMGB1 release and switched the cell death mode to apoptosis through inhibiting GD-induced CuZn superoxide dismutase release and ROS production. These results suggest that the necrosis-to-apoptosis switch activity of EP may contribute to its anti-inflammatory action and that EP may suppress tumor development possibly through its activity to induce the cell death mode switch from tumor promoting necrotic cell death to tumor suppressive apoptotic cell death.

PubMed Disclaimer

Similar articles

Cited by

Publication types