Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007;18(3):153-62.
doi: 10.1080/10495390600867515.

Characterization and comparison of chicken U6 promoters for the expression of short hairpin RNAs

Affiliations
Free article

Characterization and comparison of chicken U6 promoters for the expression of short hairpin RNAs

Terry G Wise et al. Anim Biotechnol. 2007.
Free article

Abstract

RNA interference (RNAi) is a powerful method of sequence-specific gene knockdown that can be mediated by DNA-based expression of short hairpin RNA (shRNA) molecules. A number of vectors for expression of shRNA have been developed with promoters for a small group of RNA polymerase III (pol III) transcripts of either mouse or human origin. To advance the use of RNAi as a tool for functional genomic research and future development of specific therapeutics in the chicken species, we have developed shRNA expression vectors featuring chicken U6 small nuclear RNA (snRNA) promoters. These sequences were identified based on the presence of promoter element sequence motifs upstream of matching snRNA sequences that are characteristic of these types of pol III promoters. To develop suitable shRNA expression vectors specifically for chicken functional genomic RNAi applications, we compared the efficiency of each of these promoters to express shRNA molecules. Promoter activity was measured in the context of RNAi by targeting and silencing the reporter gene encoding the enhanced green fluorescent protein (EGFP). Plasmids containing one of four identified chicken U6 promoters gave a similar degree of knockdown in DF-1 cells (chicken); although, there was some variability in Vero cells (monkey). Because the chicken promoters were not stronger than the benchmark mouse U6 promoter, we suggest that the promoter sequence and structure is more important in determining efficiency in vitro rather than its species origin.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources