Effects of acoustic parameters on bubble cloud dynamics in ultrasound tissue erosion (histotripsy)
- PMID: 17614482
- PMCID: PMC2676883
- DOI: 10.1121/1.2735110
Effects of acoustic parameters on bubble cloud dynamics in ultrasound tissue erosion (histotripsy)
Abstract
High intensity pulsed ultrasound can produce significant mechanical tissue fractionation with sharp boundaries ("histotripsy"). At a tissue-fluid interface, histotripsy produces clearly demarcated tissue erosion and the erosion efficiency depends on pulse parameters. Acoustic cavitation is believed to be the primary mechanism for the histotripsy process. To investigate the physical basis of the dependence of tissue erosion on pulse parameters, an optical method was used to monitor the effects of pulse parameters on the cavitating bubble cloud generated by histotripsy pulses at a tissue-water interface. The pulse parameters studied include pulse duration, peak rarefactional pressure, and pulse repetition frequency (PRF). Results show that the duration of growth and collapse (collapse cycle) of the bubble cloud increased with increasing pulse duration, peak rarefactional pressure, and PRF when the next pulse arrived after the collapse of the previous bubble cloud. When the PRF was too high such that the next pulse arrived before the collapse of the previous bubble cloud, only a portion of histotripsy pulses could effectively create and collapse the bubble cloud. The collapse cycle of the bubble cloud also increased with increasing gas concentration. These results may explain previous in vitro results on effects of pulse parameters on tissue erosion.
Figures





Similar articles
-
Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy - histotripsy.IEEE Trans Ultrason Ferroelectr Freq Control. 2008 May;55(5):1122-32. doi: 10.1109/TUFFC.2008.764. IEEE Trans Ultrason Ferroelectr Freq Control. 2008. PMID: 18519220
-
Optical and acoustic monitoring of bubble cloud dynamics at a tissue-fluid interface in ultrasound tissue erosion.J Acoust Soc Am. 2007 Apr;121(4):2421-30. doi: 10.1121/1.2710079. J Acoust Soc Am. 2007. PMID: 17471753 Free PMC article.
-
High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy--histotripsy.IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Oct;54(10):2091-101. doi: 10.1109/tuffc.2007.504. IEEE Trans Ultrason Ferroelectr Freq Control. 2007. PMID: 18019247 Free PMC article.
-
For Whom the Bubble Grows: Physical Principles of Bubble Nucleation and Dynamics in Histotripsy Ultrasound Therapy.Ultrasound Med Biol. 2019 May;45(5):1056-1080. doi: 10.1016/j.ultrasmedbio.2018.10.035. Epub 2019 Mar 26. Ultrasound Med Biol. 2019. PMID: 30922619 Free PMC article. Review.
-
Histotripsy: an innovative approach for minimally invasive tumour and disease treatment.Ann Med Surg (Lond). 2024 Mar 5;86(4):2081-2087. doi: 10.1097/MS9.0000000000001897. eCollection 2024 Apr. Ann Med Surg (Lond). 2024. PMID: 38576932 Free PMC article. Review.
Cited by
-
Efficacy of histotripsy combined with rt-PA in vitro.Phys Med Biol. 2016 Jul 21;61(14):5253-74. doi: 10.1088/0031-9155/61/14/5253. Epub 2016 Jun 29. Phys Med Biol. 2016. PMID: 27353199 Free PMC article.
-
Ex Vivo characterization of canine liver tissue viscoelasticity after high-intensity focused ultrasound ablation.Ultrasound Med Biol. 2014 Feb;40(2):341-50. doi: 10.1016/j.ultrasmedbio.2013.09.016. Epub 2013 Dec 7. Ultrasound Med Biol. 2014. PMID: 24315395 Free PMC article.
-
Boiling histotripsy lesion characterization on a clinical magnetic resonance imaging-guided high intensity focused ultrasound system.PLoS One. 2017 Mar 16;12(3):e0173867. doi: 10.1371/journal.pone.0173867. eCollection 2017. PLoS One. 2017. PMID: 28301597 Free PMC article.
-
Mechanical fractionation of tissues using microsecond-long HIFU pulses on a clinical MR-HIFU system.Int J Hyperthermia. 2018 Dec;34(8):1213-1224. doi: 10.1080/02656736.2018.1438672. Epub 2018 Feb 22. Int J Hyperthermia. 2018. PMID: 29429375 Free PMC article.
-
A Comparative Study of Histotripsy Parameters for the Treatment of Fibrotic ex-vivo Human Benign Prostatic Hyperplasia Tissue.Res Sq [Preprint]. 2024 Jul 2:rs.3.rs-4549536. doi: 10.21203/rs.3.rs-4549536/v1. Res Sq. 2024. Update in: Sci Rep. 2024 Sep 2;14(1):20365. doi: 10.1038/s41598-024-71163-2. PMID: 39011101 Free PMC article. Updated. Preprint.
References
-
- Fry FJ, Kossoff G, Eggleton RC, Dunn F. Threshold ultrasound dosages for structural changes in the mammalian brain. J Acoust Soc Am. 1970;48:1413–1417. - PubMed
-
- Dunn F, Fry FJ. Ultrasonic threshold dosages for the mammalian central nervous system. IEEE Trans Biomed Eng. 1971;18:253–256. - PubMed
-
- Frizzell LA, Lee CS, Aschenbach PD, Borrelli MJ, Morimoto RS, Dunn F. Involvement of ultrasonically induced cavitation in hind limb paralysis of the mouse neonate. J Acoust Soc Am. 1983;74:1062–1065. - PubMed
-
- ter Haar GR, Daniels S, Morton K. Evidence for acoustic cavitation in vivo: Threshold for bubble formation with 0.75-MHz continuous-wave and pulsed beam. IEEE Trans Ultrason Ferroelectr Freq Control. 1986;33:162–164. - PubMed
-
- Fowlkes JB, Carson PL, Chiang EH, Rubin JM. Acoustic generation of bubbles in excised canine urinary bladders. J Acoust Soc Am. 1991;89:2740–2744. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources