Boundary element model for simulating sound propagation and source localization within the lungs
- PMID: 17614522
- DOI: 10.1121/1.2715453
Boundary element model for simulating sound propagation and source localization within the lungs
Abstract
An acoustic boundary element (BE) model is used to simulate sound propagation in the lung parenchyma. It is computationally validated and then compared with experimental studies on lung phantom models. Parametric studies quantify the effect of different model parameters on the resulting acoustic field within the lung phantoms. The BE model is then coupled with a source localization algorithm to predict the position of an acoustic source within the phantom. Experimental studies validate the BE-based source localization algorithm and show that the same algorithm does not perform as well if the BE simulation is replaced with a free field assumption that neglects reflections and standing wave patterns created within the finite-size lung phantom. The BE model and source localization procedure are then applied to actual lung geometry taken from the National Library of Medicine's Visible Human Project. These numerical studies are in agreement with the studies on simpler geometry in that use of a BE model in place of the free field assumption alters the predicted acoustic field and source localization results. This work is relevant to the development of advanced auscultatory techniques that utilize multiple noninvasive sensors to construct acoustic images of sound generation and transmission to identify pathologies.
Similar articles
-
Shear elasticity estimation from surface wave: the time reversal approach.J Acoust Soc Am. 2008 Dec;124(6):3377-80. doi: 10.1121/1.2998769. J Acoust Soc Am. 2008. PMID: 19206764
-
Coupled hydrodynamic-acoustic modeling of sound generated by impacting cylindrical water jets.J Acoust Soc Am. 2008 Aug;124(2):841-50. doi: 10.1121/1.2936366. J Acoust Soc Am. 2008. PMID: 18681576
-
Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.J Acoust Soc Am. 2009 Feb;125(2):664-75. doi: 10.1121/1.2999339. J Acoust Soc Am. 2009. PMID: 19206844
-
Acoustic source localization.Ultrasonics. 2014 Jan;54(1):25-38. doi: 10.1016/j.ultras.2013.06.009. Epub 2013 Jun 30. Ultrasonics. 2014. PMID: 23870388 Review.
-
The irrelevant sound effect: what needs modelling, and a tentative model.Q J Exp Psychol A. 2003 Nov;56(8):1289-300; discussion 1301-6. doi: 10.1080/02724980343000233. Q J Exp Psychol A. 2003. PMID: 14578085 Review.
Cited by
-
Comparison of Poroviscoelastic Models for Sound and Vibration in the Lungs.J Vib Acoust. 2014 Oct;136(5):0510121-5101211. doi: 10.1115/1.4026436. Epub 2014 Jul 25. J Vib Acoust. 2014. PMID: 25278740 Free PMC article.
-
A multiscale analytical model of bronchial airway acoustics.J Acoust Soc Am. 2017 Oct;142(4):1774. doi: 10.1121/1.5005497. J Acoust Soc Am. 2017. PMID: 29092575 Free PMC article.
-
Geometric features of pig airways using computed tomography.Physiol Rep. 2016 Oct;4(20):e12995. doi: 10.14814/phy2.12995. Epub 2016 Oct 24. Physiol Rep. 2016. PMID: 27798351 Free PMC article.
-
Experimental and numerical investigation on soft tissue dynamic response due to turbulence-induced arterial vibration.Med Biol Eng Comput. 2019 Aug;57(8):1737-1752. doi: 10.1007/s11517-019-01995-y. Epub 2019 Jun 8. Med Biol Eng Comput. 2019. PMID: 31177410
-
Locating stridor caused by tumor compression by using a multichannel electronic stethoscope: a case report.J Clin Monit Comput. 2021 May;35(3):663-670. doi: 10.1007/s10877-020-00517-8. Epub 2020 May 9. J Clin Monit Comput. 2021. PMID: 32388652 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources