Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens
- PMID: 17615243
- PMCID: PMC1907315
- DOI: 10.1073/pnas.0700687104
Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens
Abstract
Deep-sea vents are the light-independent, highly productive ecosystems driven primarily by chemolithoautotrophic microorganisms, in particular by epsilon-Proteobacteria phylogenetically related to important pathogens. We analyzed genomes of two deep-sea vent epsilon-Proteobacteria strains, Sulfurovum sp. NBC37-1 and Nitratiruptor sp. SB155-2, which provide insights not only into their unusual niche on the seafloor, but also into the origins of virulence in their pathogenic relatives, Helicobacter and Campylobacter species. The deep-sea vent epsilon-proteobacterial genomes encode for multiple systems for respiration, sensing and responding to environment, and detoxifying heavy metals, reflecting their adaptation to the deep-sea vent environment. Although they are nonpathogenic, both deep-sea vent epsilon-Proteobacteria share many virulence genes with pathogenic epsilon-Proteobacteria, including genes for virulence factor MviN, hemolysin, invasion antigen CiaB, and the N-linked glycosylation gene cluster. In addition, some virulence determinants (such as the H(2)-uptake hydrogenase) and genomic plasticity of the pathogenic descendants appear to have roots in deep-sea vent epsilon-Proteobacteria. These provide ecological advantages for hydrothermal vent epsilon-Proteobacteria who thrive in their deep-sea habitat and are essential for both the efficient colonization and persistent infections of their pathogenic relatives. Our comparative genomic analysis suggests that there are previously unrecognized evolutionary links between important human/animal pathogens and their nonpathogenic, symbiotic, chemolithoautotrophic deep-sea relatives.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




Similar articles
-
Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents.Appl Environ Microbiol. 2001 Oct;67(10):4566-72. doi: 10.1128/AEM.67.10.4566-4572.2001. Appl Environ Microbiol. 2001. PMID: 11571157 Free PMC article.
-
Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field.Environ Microbiol. 2005 Oct;7(10):1619-32. doi: 10.1111/j.1462-2920.2005.00856.x. Environ Microbiol. 2005. PMID: 16156735
-
Deep-sea hydrothermal vent Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap).ISME J. 2014 Jul;8(7):1510-21. doi: 10.1038/ismej.2013.246. Epub 2014 Jan 16. ISME J. 2014. PMID: 24430487 Free PMC article.
-
Motility in the epsilon-proteobacteria.Curr Opin Microbiol. 2015 Dec;28:115-21. doi: 10.1016/j.mib.2015.09.005. Epub 2015 Nov 16. Curr Opin Microbiol. 2015. PMID: 26590774 Review.
-
Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance.FEMS Microbiol Ecol. 2008 Jul;65(1):1-14. doi: 10.1111/j.1574-6941.2008.00502.x. Epub 2008 May 21. FEMS Microbiol Ecol. 2008. PMID: 18503548 Review.
Cited by
-
Genomic insights into phage-host interaction in the deep-sea chemolithoautotrophic Campylobacterota, Nitratiruptor.ISME Commun. 2022 Nov 1;2(1):108. doi: 10.1038/s43705-022-00194-5. ISME Commun. 2022. PMID: 37938718 Free PMC article.
-
The nasal microbiota in health and disease: variation within and between subjects.Front Microbiol. 2015 Mar 2;9:134. doi: 10.3389/fmicb.2015.00134. eCollection 2015. Front Microbiol. 2015. PMID: 25784909 Free PMC article.
-
Parameters Governing the Community Structure and Element Turnover in Kermadec Volcanic Ash and Hydrothermal Fluids as Monitored by Inorganic Electron Donor Consumption, Autotrophic CO2 Fixation and 16S Tags of the Transcriptome in Incubation Experiments.Front Microbiol. 2019 Oct 9;10:2296. doi: 10.3389/fmicb.2019.02296. eCollection 2019. Front Microbiol. 2019. PMID: 31649639 Free PMC article.
-
Parallel evolution of genome structure and transcriptional landscape in the Epsilonproteobacteria.BMC Genomics. 2013 Sep 12;14:616. doi: 10.1186/1471-2164-14-616. BMC Genomics. 2013. PMID: 24028687 Free PMC article.
-
Accounting for horizontal gene transfers explains conflicting hypotheses regarding the position of aquificales in the phylogeny of Bacteria.BMC Evol Biol. 2008 Oct 3;8:272. doi: 10.1186/1471-2148-8-272. BMC Evol Biol. 2008. PMID: 18834516 Free PMC article.
References
-
- Campbell BJ, Engel AS, Porter ML, Takai K. Nat Rev Microbiol. 2006;4:458–468. - PubMed
-
- Takai K, Nakagawa S, Reysenbach A-L, Hoek J. In: Geophysical Monograph Series. Christie D, Fisher C, Lee S-M, Givens S, editors. Washington, DC: American Geophysical Union; 2006. pp. 185–213.
-
- Urakawa H, Dubilier N, Fujiwara Y, Cunningham DE, Kojima S, Stahl DA. Environ Microbiol. 2005;7:750–754. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases