A method for reproducibly preparing synthetic nanopores for resistive-pulse biosensors
- PMID: 17615589
- DOI: 10.1002/smll.200700106
A method for reproducibly preparing synthetic nanopores for resistive-pulse biosensors
Abstract
There is increasing interest in using nanopores in synthetic membranes as resistive-pulse sensors for biomedical analytes. Analytes detected with prototype artificial-nanopore biosensors include drugs, DNA, proteins, and viruses. This field is, however, currently in its infancy. A key question that must be addressed in order for such sensors to progress from an interesting laboratory experiment to practical devices is: Can the artificial-nanopore sensing element be reproducibly prepared? We have been evaluating sensors that employ a conically shaped nanopore prepared by the track-etch method as the sensor element. We describe here a new two-step pore-etching procedure that allows for good reproducibility in nanopore fabrication. In addition, we describe a simple mathematical model that allows us to predict the characteristics of the pore produced given the experimental parameters of the two-step etch. This method and model constitute important steps toward developing practical, real-world, artificial-nanopore biosensors.
Similar articles
-
Solid-state nanopores.Nat Nanotechnol. 2007 Apr;2(4):209-15. doi: 10.1038/nnano.2007.27. Epub 2007 Mar 4. Nat Nanotechnol. 2007. PMID: 18654264 Review.
-
Fabrication of nanopores in silicon chips using feedback chemical etching.Small. 2007 Jan;3(1):116-9. doi: 10.1002/smll.200600268. Small. 2007. PMID: 17294481 No abstract available.
-
Conical nanopore membranes: controlling the nanopore shape.Small. 2006 Feb;2(2):194-8. doi: 10.1002/smll.200500196. Small. 2006. PMID: 17193019 No abstract available.
-
Developing synthetic conical nanopores for biosensing applications.Mol Biosyst. 2007 Oct;3(10):667-85. doi: 10.1039/b708725j. Epub 2007 Sep 3. Mol Biosyst. 2007. PMID: 17882330 Review.
-
Fabrication of nanopores in a 100-nm thick Si3N4 membrane.J Nanosci Nanotechnol. 2006 Jul;6(7):2175-81. doi: 10.1166/jnn.2006.366. J Nanosci Nanotechnol. 2006. PMID: 17025145
Cited by
-
Microfluidic Systems Applied in Solid-State Nanopore Sensors.Micromachines (Basel). 2020 Mar 23;11(3):332. doi: 10.3390/mi11030332. Micromachines (Basel). 2020. PMID: 32210148 Free PMC article. Review.
-
Fabrication and Characterization of Silicon Micro-Funnels and Tapered Micro-Channels for Stochastic Sensing Applications.Sensors (Basel). 2008 Jun 9;8(6):3848-3872. doi: 10.3390/s8063848. Sensors (Basel). 2008. PMID: 27879912 Free PMC article.
-
Conductance-Based Determination of Solid-State Nanopore Size and Shape: An Exploration of Performance Limits.J Phys Chem C Nanomater Interfaces. 2012 Nov 8;116(44):23315-23321. doi: 10.1021/jp305381j. J Phys Chem C Nanomater Interfaces. 2012. PMID: 23750286 Free PMC article.
-
Methods for counting particles in microfluidic applications.Microfluid Nanofluidics. 2009;7(6):739. doi: 10.1007/s10404-009-0493-7. Epub 2009 Aug 20. Microfluid Nanofluidics. 2009. PMID: 32214956 Free PMC article. Review.
-
Chemically tailoring nanopores for single-molecule sensing and glycomics.Anal Bioanal Chem. 2020 Oct;412(25):6639-6654. doi: 10.1007/s00216-020-02717-2. Epub 2020 Jun 1. Anal Bioanal Chem. 2020. PMID: 32488384
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources