Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Mar 25;251(6):1789-94.

Basement membrane procollagen is not converted to collagen in organ cultures of parietal yolk sac endoderm

  • PMID: 176163
Free article

Basement membrane procollagen is not converted to collagen in organ cultures of parietal yolk sac endoderm

R R Minor et al. J Biol Chem. .
Free article

Abstract

Basement membrane procollagen biosynthesis was studied in organ cultures of embryonic rat parietal yolk sac endoderm by following [14C]proline incorporation into nondialyzable proteins. After reduction with 2-mercaptoethanol the 14C-proteins synthesized were characterized by agarose gel filtration and disc electrophoresis in the presence of sodium dodecyl sulfate. The labeled procollagen was identified by its content of hydroxy[14C]proline, its sensitivity to digestion with bacterial collagenase, and its resistance to digestion with pepsin. In cultures which were continuously labeled for periods from 6 hours to 4 days, the pro-alpha chains consistently eluted as a single peak with an apparent molecular weight of 160,000. After pepsin digestion the resultant alpha chains had an apparent molecular weight between 125,000 and 140,000. This suggests that basement membrane procollagen either contains non-triple helical pepsin-resistant regions or a triple helical region which is larger than the corresponding region of interstitial procollagen. Two experiments were performed to determine whether the chains of newly synthesized basement membrane procollagen were cleaved to a smaller molecular species. In the first, the hydroxylation and secretion of procollagen were blocked with alpha, alpha'-dipyridyl, and the resulting intracellular chains of basement membrane protocollagen were found to co-elute with fully hydroxylated and secreted pro-alpha chains. In the second, cultures were labeled for 1 day and chased for 3 days with unlabeled medium. Autoradiography had shown that most of the label was chased into new basement membrane. Agarose chromotography showed that after 3-day chase the pro-alpha chains still eluted with an apparent molecular weight of 160,000. Thus, the data indicated that basement membrane procollagen was deposited in new basement membrane without undergoing a time-dependent extracellular conversion.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources