Use of an Escherichia coli recombinant producing thermostable polyphosphate kinase as an ATP regenerator to produce fructose 1,6-diphosphate
- PMID: 17616610
- PMCID: PMC2042086
- DOI: 10.1128/AEM.00278-07
Use of an Escherichia coli recombinant producing thermostable polyphosphate kinase as an ATP regenerator to produce fructose 1,6-diphosphate
Abstract
Heat-treated Escherichia coli producing Thermus polyphosphate kinase regenerated ATP by using exogenous polyphosphate. This recombinant could be used as a platform to produce valuable compounds in combination with thermostable phosphorylating or energy-requiring enzymes. In this work, we demonstrated the production of fructose 1,6-diphosphate from fructose and polyphosphate.
Figures



Similar articles
-
Characterization of Two Polyphosphate Kinase 2 Enzymes Used for ATP Synthesis.Appl Biochem Biotechnol. 2020 Jun;191(2):881-892. doi: 10.1007/s12010-019-03224-6. Epub 2020 Jan 6. Appl Biochem Biotechnol. 2020. PMID: 31907778
-
One-pot synthesis of glutathione by a two-enzyme cascade using a thermophilic ATP regeneration system.J Biotechnol. 2017 Jan 10;241:163-169. doi: 10.1016/j.jbiotec.2016.11.034. Epub 2016 Dec 2. J Biotechnol. 2017. PMID: 27919691
-
First archaeal inorganic polyphosphate/ATP-dependent NAD kinase, from hyperthermophilic archaeon Pyrococcus horikoshii: cloning, expression, and characterization.Appl Environ Microbiol. 2005 Aug;71(8):4352-8. doi: 10.1128/AEM.71.8.4352-4358.2005. Appl Environ Microbiol. 2005. PMID: 16085824 Free PMC article.
-
Inorganic polyphosphate and polyphosphate kinase: their novel biological functions and applications.Biochemistry (Mosc). 2000 Mar;65(3):315-23. Biochemistry (Mosc). 2000. PMID: 10739474 Review.
-
Definitive enzymatic assays in polyphosphate analysis.Prog Mol Subcell Biol. 1999;23:241-52. doi: 10.1007/978-3-642-58444-2_12. Prog Mol Subcell Biol. 1999. PMID: 10448680 Review. No abstract available.
Cited by
-
ATP regulation in bioproduction.Microb Cell Fact. 2015 Dec 10;14:198. doi: 10.1186/s12934-015-0390-6. Microb Cell Fact. 2015. PMID: 26655598 Free PMC article. Review.
-
Modules for in vitro metabolic engineering: Pathway assembly for bio-based production of value-added chemicals.Synth Syst Biotechnol. 2017 Jun 7;2(2):65-74. doi: 10.1016/j.synbio.2017.06.002. eCollection 2017 Jun. Synth Syst Biotechnol. 2017. PMID: 29062963 Free PMC article. Review.
-
Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway.Microb Cell Fact. 2012 Sep 6;11:120. doi: 10.1186/1475-2859-11-120. Microb Cell Fact. 2012. PMID: 22950411 Free PMC article.
-
High Conversion of D-Fructose into D-Allulose by Enzymes Coupling with an ATP Regeneration System.Mol Biotechnol. 2019 Jun;61(6):432-441. doi: 10.1007/s12033-019-00174-6. Mol Biotechnol. 2019. PMID: 30963480
-
Polyphosphate Kinase from Burkholderia cenocepacia, One Enzyme Catalyzing a Two-Step Cascade Reaction to Synthesize ATP from AMP.Int J Mol Sci. 2024 Dec 3;25(23):12995. doi: 10.3390/ijms252312995. Int J Mol Sci. 2024. PMID: 39684704 Free PMC article.
References
-
- Adams, M. W., and R. M. Kelly. 1998. Finding and using hyperthermophilic enzymes. Trends Biotechnol. 16:329-332. - PubMed
-
- Coolbear, T., R. M. Daniel, and H. W. Morgan. 1992. The enzymes from extreme thermophiles: bacterial sources, thermostabilities and industrial relevance. Adv. Biochem. Eng. Biotechnol. 45:57-98. - PubMed
-
- Didlake, R., K. A. Kirchner, J. Lewin, J. D. Bower, and A. K. Markov. 1989. Attenuation of ischemic renal injury with fructose 1,6-diphosphate. J. Surg. Res. 47:220-226. - PubMed
-
- Eichler, J. 2001. Biotechnological uses of archaeal extremozymes. Biotechnol. Adv. 19:261-278. - PubMed
-
- Farias, L. A., M. Willis, and G. A. Gregory. 1986. Effects of fructose-1,6-diphosphate, glucose, and saline on cardiac resuscitation. Anesthesiology 65:595-601. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases