Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul 1;67(13):6044-52.
doi: 10.1158/0008-5472.CAN-06-1689.

High-mobility group A1 proteins inhibit expression of nucleotide excision repair factor xeroderma pigmentosum group A

Affiliations

High-mobility group A1 proteins inhibit expression of nucleotide excision repair factor xeroderma pigmentosum group A

Jennifer E Adair et al. Cancer Res. .

Abstract

Cells that overexpress high-mobility group A1 (HMGA1) proteins exhibit deficient nucleotide excision repair (NER) after exposure to DNA-damaging agents, a condition ameliorated by artificially lowering intracellular levels of these nonhistone proteins. One possible mechanism for this NER inhibition is down-regulation of proteins involved in NER, such as xeroderma pigmentosum complimentation group A (XPA). Microarray and reverse transcription-PCR data indicate a 2.6-fold decrease in intracellular XPA mRNA in transgenic MCF-7 cells overexpressing HMGA1 proteins compared with non-HMGA1-expressing cells. XPA protein levels are also approximately 3-fold lower in HMGA1-expressing MCF-7 cells. Moreover, whereas a >2-fold induction of XPA proteins is observed in normal MCF-7 cells 30 min after UV exposure, no apparent induction of XPA protein is observed in MCF-7 cells expressing HMGA1. Mechanistically, we present both chromatin immunoprecipitation and promoter site-specific mutagenesis evidence linking HMGA1 to repression of XPA transcription via binding to a negative regulatory element in the endogenous XPA gene promoter. Phenotypically, HMGA1-expressing cells exhibit compromised removal of cyclobutane pyrimidine dimer lesions, a characteristic of cells that express low levels of XPA. Importantly, we show that restoring expression of wild-type XPA in HMGA1-expressing cells rescues UV resistance comparable with that of normal MCF-7 cells. Together, these data provide strong experimental evidence that HMGA1 proteins are involved in inhibiting XPA expression, resulting in increased UV sensitivity in cells that overexpress these proteins. Because HMGA1 proteins are overexpressed in most naturally occurring cancers, with increasing cellular concentrations correlating with increasing metastatic potential and poor patient prognosis, the current findings provide new insights into previously unsuspected mechanisms contributing to tumor progression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources