LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss
- PMID: 17617907
- PMCID: PMC1940013
- DOI: 10.1186/1471-2164-8-218
LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss
Abstract
Background: LTR retrotransposons are one of the main causes for plant genome size and structure evolution, along with polyploidy. The characterization of their amplification and subsequent elimination of the genomes is therefore a major goal in plant evolutionary genomics. To address the extent and timing of these forces, we performed a detailed analysis of 41 LTR retrotransposon families in rice.
Results: Using a new method to estimate the insertion date of both truncated and complete copies, we estimated these two forces more accurately than previous studies based on other methods. We show that LTR retrotransposons have undergone bursts of amplification within the past 5 My. These bursts vary both in date and copy number among families, revealing that each family has a particular amplification history. The number of solo LTR varies among families and seems to correlate with LTR size, suggesting that solo LTR formation is a family-dependent process. The deletion rate estimate leads to the prediction that the half-life of LTR retrotransposon sequences evolving neutrally is about 19 My in rice, suggesting that other processes than the formation of small deletions are prevalent in rice DNA removal.
Conclusion: Our work provides insights into the dynamics of LTR retrotransposons in the rice genome. We show that transposable element families have distinct amplification patterns, and that the turn-over of LTR retrotransposons sequences is rapid in the rice genome.
Figures



Similar articles
-
Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences.BMC Genomics. 2004 Mar 2;5(1):18. doi: 10.1186/1471-2164-5-18. BMC Genomics. 2004. PMID: 15040813 Free PMC article.
-
Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L.Mol Biol Evol. 2003 Apr;20(4):528-40. doi: 10.1093/molbev/msg055. Epub 2003 Mar 5. Mol Biol Evol. 2003. PMID: 12654934
-
Rapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-Genome Oryza Species.G3 (Bethesda). 2017 Jun 7;7(6):1875-1885. doi: 10.1534/g3.116.037572. G3 (Bethesda). 2017. PMID: 28413161 Free PMC article.
-
LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model.Cytogenet Genome Res. 2005;110(1-4):91-107. doi: 10.1159/000084941. Cytogenet Genome Res. 2005. PMID: 16093661 Review.
-
Co-evolution of plant LTR-retrotransposons and their host genomes.Protein Cell. 2013 Jul;4(7):493-501. doi: 10.1007/s13238-013-3037-6. Epub 2013 Jun 23. Protein Cell. 2013. PMID: 23794032 Free PMC article. Review.
Cited by
-
Mutator System Derivatives Isolated from Sugarcane Genome Sequence.Trop Plant Biol. 2012 Sep;5(3):233-243. doi: 10.1007/s12042-012-9104-y. Epub 2012 Jul 6. Trop Plant Biol. 2012. PMID: 22905278 Free PMC article.
-
Ttd1a promoter is involved in DNA-protein binding by salt and light stresses.Mol Biol Rep. 2011 Aug;38(6):3787-94. doi: 10.1007/s11033-010-0494-3. Epub 2010 Nov 23. Mol Biol Rep. 2011. PMID: 21104438
-
Nanopore sequencing-based genome assembly and evolutionary genomics of circum-basmati rice.Genome Biol. 2020 Feb 5;21(1):21. doi: 10.1186/s13059-020-1938-2. Genome Biol. 2020. PMID: 32019604 Free PMC article.
-
Transposition of a 600 thousand-year-old LTR retrotransposon in the model legume Lotus japonicus.Plant Mol Biol. 2008 Dec;68(6):653-63. doi: 10.1007/s11103-008-9397-2. Epub 2008 Sep 19. Plant Mol Biol. 2008. PMID: 18802778
-
Cross-Species Transmission and Differential Fate of an Endogenous Retrovirus in Three Mammal Lineages.PLoS Pathog. 2015 Nov 12;11(11):e1005279. doi: 10.1371/journal.ppat.1005279. eCollection 2015. PLoS Pathog. 2015. PMID: 26562410 Free PMC article.
References
-
- Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 1998;8:464–78. - PubMed
-
- Kaminker JS, Bergman CM, Kronmiller B, Carlson J, Svirskas R, Patel S, Frise E, Wheeler DA, Lewis SE, Rubin GM, Ashburner M, Celniker SE. The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol. 2002;3:RESEARCH0084. doi: 10.1186/gb-2002-3-12-research0084. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous