Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;13(8):920-6.
doi: 10.1038/nm1607. Epub 2007 Jul 8.

E3 ubiquitin ligase Cblb regulates the acute inflammatory response underlying lung injury

Affiliations

E3 ubiquitin ligase Cblb regulates the acute inflammatory response underlying lung injury

Kurt Bachmaier et al. Nat Med. 2007 Aug.

Abstract

The E3 ubiquitin ligase Cblb has a crucial role in the prevention of chronic inflammation and autoimmunity. Here we show that Cblb also has an unexpected function in acute lung inflammation. Cblb attenuates the sequestration of inflammatory cells in the lungs after administration of lipopolysaccharide (LPS). In a model of polymicrobial sepsis in which acute lung inflammation depends on the LPS receptor (Toll-like receptor 4, TLR-4), the loss of Cblb expression accentuates acute lung inflammation and reduces survival. Loss of Cblb significantly increases sepsis-induced release of inflammatory cytokines and chemokines. Cblb controls the association between TLR4 and the intracellular adaptor MyD88. Expression of wild-type Cblb, but not expression of a Cblb mutant that lacks E3 ubiquitin ligase function, prevents the activity of a reporter gene for the transcription factor nuclear factor-kappaB (NF-kappaB) in monocytes that have been challenged with LPS. The downregulation of TLR4 expression on the cell surface of neutrophils is impaired in the absence of Cblb. Our data reveal that Cblb regulates the TLR4-mediated acute inflammatory response that is induced by sepsis.

PubMed Disclaimer

Publication types

MeSH terms