Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007:161:385-92.
doi: 10.1016/S0079-6123(06)61027-3.

Intrathecal drug delivery strategy is safe and efficacious for localized delivery to the spinal cord

Affiliations
Review

Intrathecal drug delivery strategy is safe and efficacious for localized delivery to the spinal cord

Molly S Shoichet et al. Prog Brain Res. 2007.

Abstract

Neuroprotective and neuroregenerative strategies for spinal cord injury repair are limited in part by poor delivery techniques. A novel drug delivery system is being developed in our laboratory that can provide localized release of therapeutically relevant molecules from an injectable hydrogel. Design criteria were established for the hydrogel to be--injectable, fast-gelling, biocompatible, biodegradable and able to release biologically active therapeutics when injected into the intrathecal space that surrounds the spinal cord. This novel way of localized drug delivery to the spinal cord was tested first with a collagen gel and then with a new hydrogel blend of hyaluronan and methylcellulose (HAMC). The underlying principle that this novel methodology is both safe and able to provide localized delivery was proven with a fast gelling collagen solution. Using a recombinant human epidermal growth factor, rhEGF, dispersed in collagen, we demonstrated localized release to the injured spinal cord. We extended this technology to other fast-gelling systems and found that HAMC was injectable due to the shear thinning property of hyaluronan (HA), biocompatible and had some therapeutic benefit when injected into the intrathecal space using a compression injury model in rats.

PubMed Disclaimer

Publication types

LinkOut - more resources