Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct;26(10):1869-78.
doi: 10.1007/s00299-007-0383-y. Epub 2007 Jul 7.

Downregulation of terpenoid indole alkaloid biosynthetic pathway by low temperature and cloning of a AP2 type C-repeat binding factor (CBF) from Catharanthus roseus (L). G. Don

Affiliations

Downregulation of terpenoid indole alkaloid biosynthetic pathway by low temperature and cloning of a AP2 type C-repeat binding factor (CBF) from Catharanthus roseus (L). G. Don

Ajaswrata Dutta et al. Plant Cell Rep. 2007 Oct.

Abstract

Plants produce secondary metabolites in response to various external signals. Coordinated transcriptional control of biosynthetic genes emerges as a major mechanism dictating the accumulation of secondary metabolites in plant cells. However, information about stress regulation of secondary metabolites and the molecular mechanisms regulating these specialized pathways are poorly understood. Here, we show that terpenoid indole alkaloid (TIA) biosynthetic pathway is differentially regulated in response to different abiotic stresses in Catharanthus roseus, a model medicinal plant producing important anticancer and antihypertensive drugs. Semiquantitative RT-PCR analysis of TIA and related primary pathway genes in response to dehydration, low temperature, salinity, UV-light and wounding revealed their negative regulation in response to low temperature. HPLC analysis further supports the notion that TIA biosynthetic pathway is negatively controlled by low temperature stress. Furthermore, we report the cloning of a C-repeat binding transcription factor from C. roseus (CrCbf), belonging to AP2 class of transcription factor and possessed the NLS and CBF signature sequence characteristic of CBFs. CrCbf was found to be similar to Brassica Cbfs, whereas it was distant to monocot Cbfs. Southern analysis of CrCbf revealed the presence of more than one copy of CrCbf gene or other Cbf homologues in C. roseus genome. The transcription of CrCbf was found to be constitutive in response to low temperature but it showed differential distribution. The need for identifying novel transcription factors in understanding secondary metabolite biosynthesis is discussed.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Plant Mol Biol. 1992 Apr;18(6):1121-31 - PubMed
    1. Plant Cell Rep. 2004 Sep;23(3):148-54 - PubMed
    1. Plant Cell Rep. 2007 Jul;26(7):907-15 - PubMed
    1. Plant Physiol. 2002 Aug;129(4):1781-7 - PubMed
    1. Plant Physiol. 1999 Apr;119(4):1289-96 - PubMed

Publication types

Associated data

LinkOut - more resources