Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Oct;66(4):1392-409.
doi: 10.1152/jn.1991.66.4.1392.

Efferent neurons and suspected interneurons in second somatosensory cortex of the awake rabbit: receptive fields and axonal properties

Affiliations

Efferent neurons and suspected interneurons in second somatosensory cortex of the awake rabbit: receptive fields and axonal properties

H A Swadlow. J Neurophysiol. 1991 Oct.

Abstract

1. Receptive-field properties of antidromically identified efferent neurons within the representation of vibrissae and sinus hairs above the mouth were examined in secondary somatosensory cortex (S-2) of fully awake adult rabbits. Efferent neurons studied included callosal neurons (CC neurons, n = 88), ipsilateral corticocortical neurons (C-IC neurons, n = 51) that project to primary somatosensory cortex (S-1), and corticofugal neurons of layer 5 (CF-5 neurons, n = 63) and layer 6 (CF-6 neurons, n = 42) that project to and/or beyond the thalamus. Appropriate collision tests demonstrated that substantial numbers of corticocortical efferent neurons (21 of 113 tested) project an axon to both the corpus callosum and to ipsilateral S-1. 2. Suspected interneurons (SINs, n = 62) were also studied. These neurons were not activated antidromically from any stimulus site but did respond synaptically to electrical stimulation of the ventrobasal (VB) thalamus with a burst of three or more spikes at frequencies of 600 to greater than 900 Hz. Most of these neurons also responded synaptically to stimulation of S-1 and the corpus callosum. The action potentials of these neurons were much shorter (mean, 0.49 ms) than those of efferent neurons (mean, 1.01 ms). 3. CF-5 neurons differed from CC, C-IC, and CF-6 neurons in their spontaneous firing rates, axonal properties, and receptive-field properties. Whereas CF-5 neurons had a mean spontaneous firing rate of 5.7 spikes/s, CC, C-IC, and CF-6 neurons all had mean values of less than 1/s. Axonal conduction velocities of CF-5 neurons were much higher (mean, 11.90 m/s) than either CC (mean, 2.63 m/s), C-IC (mean, 0.86 m/s), or CF-6 (mean, 1.73 m/s) neurons. A decrease in antidromic latency (the "supernormal" period), which was dependent on prior impulse activity, was seen in most CC, C-IC, and CF-6 neurons but was minimal or absent in CF-5 neurons of comparable conduction velocity. Although all CF-5 neurons responded to peripheral sensory stimulation, many CC (52%), C-IC (49%), and CF-6 (55%) neurons did not. CC and CF-6 neurons that did not respond to sensory stimulation had significantly lower axonal conduction velocities and spontaneous firing rates than those that responded to such stimulation. Whereas no CC, C-IC, or CF-6 neuron responded synaptically to callosal stimulation, 43% of CF-5 neurons (and 78% of SINs) did so respond. Similar differences in synaptic responsivity to stimulation of S-1 were seen in these populations.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources