Bioinformatic approaches for modeling the substrate specificity of HIV-1 protease: an overview
- PMID: 17620050
- DOI: 10.1586/14737159.7.4.435
Bioinformatic approaches for modeling the substrate specificity of HIV-1 protease: an overview
Abstract
HIV-1 protease has a broad and complex substrate specificity, which hitherto has escaped a simple comprehensive definition. This, and the relatively high mutation rate of the retroviral protease, makes it challenging to design effective protease inhibitors. Several attempts have been made during the last two decades to elucidate the enigmatic cleavage specificity of HIV-1 protease and to predict cleavage of novel substrates using bioinformatic analysis methods. This review describes the methods that have been utilized to date to address this important problem and the results achieved. The data sets used are also reviewed and important aspects of these are highlighted.
Comment in
-
The importance of physicochemical characteristics and nonlinear classifiers in determining HIV-1 protease specificity.Bioengineered. 2016 Apr 2;7(2):65-78. doi: 10.1080/21655979.2016.1149271. Bioengineered. 2016. PMID: 27212259 Free PMC article.
Similar articles
-
Bioinformatic approaches for predicting substrates of proteases.J Bioinform Comput Biol. 2011 Feb;9(1):149-78. doi: 10.1142/s0219720011005288. J Bioinform Comput Biol. 2011. PMID: 21328711 Review.
-
Proteochemometrics mapping of the interaction space for retroviral proteases and their substrates.Bioorg Med Chem. 2009 Jul 15;17(14):5229-37. doi: 10.1016/j.bmc.2009.05.045. Epub 2009 May 23. Bioorg Med Chem. 2009. PMID: 19539482
-
Deconvolving multiplexed protease signatures with substrate reduction and activity clustering.PLoS Comput Biol. 2019 Sep 3;15(9):e1006909. doi: 10.1371/journal.pcbi.1006909. eCollection 2019 Sep. PLoS Comput Biol. 2019. PMID: 31479443 Free PMC article.
-
PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.PLoS One. 2012;7(11):e50300. doi: 10.1371/journal.pone.0050300. Epub 2012 Nov 29. PLoS One. 2012. PMID: 23209700 Free PMC article.
-
Commercial proteases: present and future.FEBS Lett. 2013 Apr 17;587(8):1155-63. doi: 10.1016/j.febslet.2012.12.019. Epub 2013 Jan 11. FEBS Lett. 2013. PMID: 23318711 Review.
Cited by
-
PMeS: prediction of methylation sites based on enhanced feature encoding scheme.PLoS One. 2012;7(6):e38772. doi: 10.1371/journal.pone.0038772. Epub 2012 Jun 15. PLoS One. 2012. PMID: 22719939 Free PMC article.
-
Feature Selection Combined with Neural Network Structure Optimization for HIV-1 Protease Cleavage Site Prediction.Biomed Res Int. 2015;2015:263586. doi: 10.1155/2015/263586. Epub 2015 Apr 15. Biomed Res Int. 2015. PMID: 25961009 Free PMC article.
-
The importance of physicochemical characteristics and nonlinear classifiers in determining HIV-1 protease specificity.Bioengineered. 2016 Apr 2;7(2):65-78. doi: 10.1080/21655979.2016.1149271. Bioengineered. 2016. PMID: 27212259 Free PMC article.
-
A genetic approach for building different alphabets for peptide and protein classification.BMC Bioinformatics. 2008 Jan 24;9:45. doi: 10.1186/1471-2105-9-45. BMC Bioinformatics. 2008. PMID: 18218100 Free PMC article.
-
How to find simple and accurate rules for viral protease cleavage specificities.BMC Bioinformatics. 2009 May 16;10:149. doi: 10.1186/1471-2105-10-149. BMC Bioinformatics. 2009. PMID: 19445713 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources