Immunochemical analysis of the structure of the signature domains of thrombospondin-1 and thrombospondin-2 in low calcium concentrations
- PMID: 17620335
- DOI: 10.1074/jbc.M703804200
Immunochemical analysis of the structure of the signature domains of thrombospondin-1 and thrombospondin-2 in low calcium concentrations
Abstract
Thrombospondins (TSPs) undergo conformational changes upon removal of calcium. The eight C-type and five N-type calcium-binding repeats of TSP-2 form a circuitous wire that, in 2 mm calcium, interacts at its ends with more N-terminal epidermal growth factor (EGF)-like modules, EGF2 and EGF3, and the C-terminal lectin-like module. These components, along with the other EGF-like module(s), form the signature domain of TSPs. Characterization of conformation-sensitive epitopes of monoclonal antibodies to human TSP-2 and its TSP-1 homolog have given insights into the structure of the signature domain in the absence of calcium. The epitope for 4B6.13 anti-TSP-2 was localized to His-722 and Leu-703 in repeat 1C of the wire; recognition only occurred in constructs that included EGF3, the rest of the wire, and the lectin-like module and in the presence of calcium. The epitope for C6.7 anti-TSP-1 was localized to Glu-609 in the EGF2 module. The C6.7 epitope was preferentially recognized when EGF2 was expressed in the context of EGF1, EGF3, the wire, and the lectin-like module. Preferential recognition of the C6.7 epitope did not require calcium. Rotary shadowing electron microscopy of TSP-1 has shown elongation of the stalk and diminution of the C-terminal globule. We propose a model whereby at low calcium concentrations the lectin-like module drops away from EGF3 concomitant with changes in conformation of the wire and loss of the 4B6.13 epitope. A critical feature of the model is interaction of repeat 12N of the wire with EGF2 in both the presence and absence of calcium.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
