Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep;50(3):503-11.
doi: 10.1161/HYPERTENSIONAHA.107.090092. Epub 2007 Jul 9.

Acute and chronic ventricular-arterial coupling in systole and diastole: insights from an elderly hypertensive model

Affiliations

Acute and chronic ventricular-arterial coupling in systole and diastole: insights from an elderly hypertensive model

Brian P Shapiro et al. Hypertension. 2007 Sep.

Abstract

Aging and hypertension lead to arterial remodeling and tandem increases in arterial (Ea) and ventricular (LV) systolic stiffness (ventricular-arterial [VA] coupling). Age and hypertension also predispose to heart failure with normal ejection fraction (HFnlEF), where symptoms during hypertensive urgencies or exercise are common. We hypothesized that: (1) chronic VA coupling also occurs in diastole, (2) acute changes in Ea are coupled with shifts in the diastolic and systolic pressure-volume relationships (PVR), and (3) diastolic VA coupling reflects changes in LV diastolic stiffness rather than external forces or relaxation. Old chronically hypertensive (OHT, n=8) and young normal (YNL, n=7) dogs underwent assessment of PVR (caval occlusion) and of aortic pressure, dimension, and flow, at baseline and during changes in afterload and preload. Concomitant changes in the slope/position of PVR were accounted for by calculating systolic (ESV(200)) and diastolic (EDV(20)) volumes at common pressures (capacitance). OHT displayed marked vascular remodeling. Indices reflecting the pulsatile component of Ea (aortic stiffness and systemic arterial compliance) were more impaired in OHT at any distending pressure. In both groups, acute increases in Ea were associated with decreases in ESV(200) and EDV(20). However, at any load, OHT had lower ESV(200) and EDV(20), associated with LV remodeling and myocardial endothelin activation. Acute changes in EDV(20) were not mediated by changes in relaxation or external forces. These observations provide insight into the mechanisms whereby arterial remodeling and acute and chronic VA coupling in both systole and diastole may predispose to and interact with increases in load to cause HFnlEF.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms