Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Aug;20(4):300-6.
doi: 10.1097/ACO.0b013e32816678a5.

Correlating the clinical actions and molecular mechanisms of general anesthetics

Affiliations
Review

Correlating the clinical actions and molecular mechanisms of general anesthetics

Ken Solt et al. Curr Opin Anaesthesiol. 2007 Aug.

Abstract

Purpose of review: To summarize recent in-vitro and in-vivo research on molecular mechanisms of general anesthetics' actions.

Recent findings: Classes of general anesthetics with distinct clinical profiles appear to induce amnesia, hypnosis, and immobility via different molecular targets. Propofol, etomidate, and barbiturates produce profound amnesia and hypnosis, but weak immobility, by enhancing the activity of specific gamma-aminobutyric acid typeA receptors. In contrast, nitrous oxide, xenon, and ketamine produce analgesia, but weak hypnosis and amnesia, by inhibiting glutamate and nicotinic receptors and activating potassium 'leak' channels such as TREK-1. Volatile halogenated anesthetics show little selectivity for molecular targets. They act on all the channels mentioned above, and other targets such as glycine receptors and mediators of neurotransmitter release.

Summary: Several clinically distinct 'anesthetic states' are induced by different classes of drugs acting on neuronal circuits via different molecular targets. Understanding the mechanisms underlying the therapeutic and toxic actions of general anesthetics helps us reframe the 'art' of anesthesia into more of a 'science'. These studies also enhance efforts to develop new drugs with improved clinical utility.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources