Biological solutions to transport network design
- PMID: 17623638
- PMCID: PMC2288531
- DOI: 10.1098/rspb.2007.0459
Biological solutions to transport network design
Abstract
Transport networks are vital components of multicellular organisms, distributing nutrients and removing waste products. Animal and plant transport systems are branching trees whose architecture is linked to universal scaling laws in these organisms. In contrast, many fungi form reticulated mycelia via the branching and fusion of thread-like hyphae that continuously adapt to the environment. Fungal networks have evolved to explore and exploit a patchy environment, rather than ramify through a three-dimensional organism. However, there has been no explicit analysis of the network structures formed, their dynamic behaviour nor how either impact on their ecological function. Using the woodland saprotroph Phanerochaete velutina, we show that fungal networks can display both high transport capacity and robustness to damage. These properties are enhanced as the network grows, while the relative cost of building the network decreases. Thus, mycelia achieve the seemingly competing goals of efficient transport and robustness, with decreasing relative investment, by selective reinforcement and recycling of transport pathways. Fungal networks demonstrate that indeterminate, decentralized systems can yield highly adaptive networks. Understanding how these relatively simple organisms have found effective transport networks through a process of natural selection may inform the design of man-made networks.
Figures




Similar articles
-
Imaging complex nutrient dynamics in mycelial networks.J Microsc. 2008 Aug;231(2):317-31. doi: 10.1111/j.1365-2818.2008.02043.x. J Microsc. 2008. PMID: 18778429 Review.
-
The Mycelium as a Network.Microbiol Spectr. 2017 May;5(3):10.1128/microbiolspec.funk-0033-2017. doi: 10.1128/microbiolspec.FUNK-0033-2017. Microbiol Spectr. 2017. PMID: 28524023 Free PMC article. Review.
-
Growth-induced mass flows in fungal networks.Proc Biol Sci. 2010 Nov 7;277(1698):3265-74. doi: 10.1098/rspb.2010.0735. Epub 2010 Jun 10. Proc Biol Sci. 2010. PMID: 20538649 Free PMC article.
-
Saprotrophic basidiomycete mycelia and their interspecific interactions affect the spatial distribution of extracellular enzymes in soil.FEMS Microbiol Ecol. 2011 Oct;78(1):80-90. doi: 10.1111/j.1574-6941.2011.01123.x. Epub 2011 May 26. FEMS Microbiol Ecol. 2011. PMID: 21539585
-
Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution.Mycol Res. 2005 Jan;109(Pt 1):7-20. doi: 10.1017/s0953756204001753. Mycol Res. 2005. PMID: 15736859 Review.
Cited by
-
Untapped potential: exploiting fungi in bioremediation of hazardous chemicals.Nat Rev Microbiol. 2011 Mar;9(3):177-92. doi: 10.1038/nrmicro2519. Epub 2011 Feb 7. Nat Rev Microbiol. 2011. PMID: 21297669 Review.
-
Fungal evolution: cellular, genomic and metabolic complexity.Biol Rev Camb Philos Soc. 2020 Oct;95(5):1198-1232. doi: 10.1111/brv.12605. Epub 2020 Apr 17. Biol Rev Camb Philos Soc. 2020. PMID: 32301582 Free PMC article.
-
Colonies of the fungus Aspergillus niger are highly differentiated to adapt to local carbon source variation.Environ Microbiol. 2020 Mar;22(3):1154-1166. doi: 10.1111/1462-2920.14907. Epub 2020 Jan 6. Environ Microbiol. 2020. PMID: 31876091 Free PMC article.
-
The nutritional status and root development of silver fir (Abies alba Mill.) seedlings growing on decaying deadwood in temperate forest ecosystem.Sci Rep. 2023 Oct 19;13(1):17813. doi: 10.1038/s41598-023-45187-z. Sci Rep. 2023. PMID: 37857689 Free PMC article.
-
Stepwise slime mould growth as a template for urban design.Sci Rep. 2022 Jan 25;12(1):1322. doi: 10.1038/s41598-022-05439-w. Sci Rep. 2022. PMID: 35079107 Free PMC article.
References
-
- Albert R, Barabasi A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002;74:47–97. doi:10.1103/RevModPhys.74.47 - DOI
-
- Banavar J.R, Maritan A, Rinaldo A. Size and form in efficient transportation networks. Nature. 1999;399:130–132. doi:10.1038/20144 - DOI - PubMed
-
- Banavar J.R, Damuth J, Maritan A, Rinaldo A. Supply–demand balance and metabolic scaling. Proc. Natl Acad. Sci. USA. 2002;99:10 506–10 509. doi:10.1073/pnas.162216899 - DOI - PMC - PubMed
-
- Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A. The architecture of complex weighted networks. Proc. Natl Acad. Sci. USA. 2004a;101:3747–3752. doi:10.1073/pnas.0400087101 - DOI - PMC - PubMed
-
- Barrat A, Barthelemy M, Vespignani A. Modeling the evolution of weighted networks. Phys. Rev. E. 2004b;70:066149. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources