Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006:40:107-17.
doi: 10.1007/978-1-4020-4896-8_8.

Analysing the DNA damage and replication checkpoints in DT40 cells

Affiliations
Review

Analysing the DNA damage and replication checkpoints in DT40 cells

Michael D Rainey et al. Subcell Biochem. 2006.

Abstract

Eukaryotic cells respond to DNA damage or blocks to DNA replication by triggering a variety of "checkpoint" responses which delay cell cycle progression, modulate DNA replication, and facilitate DNA repair. Checkpoints play a vital role in maintaining genome integrity, particularly under conditions of genotoxic stress, and mutations in checkpoint genes can predispose to cancer and aging. Checkpoints are best understood at the molecular level in model organisms such as fission yeast, where the presence of aberrant DNA structures is sensed and relayed via signal transduction pathways to activate the checkpoint effector kinases, Chk1 and Cds1/ Chk2, which implement appropriate responses. Many of the yeast checkpoint sensor, transducer, and effector proteins are conserved in vertebrate cells, raising the question of whether they function in a similar or analogous way. DT40 cells provide a particularly tractable experimental system for genetic and biochemical dissection of checkpoints in vertebrates. Thus far, gene knockouts in DT40 have revealed that the Chk1 and Chk2 checkpoint effector kinases control a very different range of checkpoint responses in vertebrates compared to yeast. In future, these and other DT40 mutants will provide powerful tools for understanding the molecular basis of these unexpected differences and detailed studies of checkpoint mechanisms.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources