Food web-specific biomagnification of persistent organic pollutants
- PMID: 17626882
- DOI: 10.1126/science.1138275
Food web-specific biomagnification of persistent organic pollutants
Erratum in
- Science. 2007 Oct 5;318(5847):44
Abstract
Substances that accumulate to hazardous levels in living organisms pose environmental and human-health risks, which governments seek to reduce or eliminate. Regulatory authorities identify bioaccumulative substances as hydrophobic, fat-soluble chemicals having high octanol-water partition coefficients (K(OW))(>/=100,000). Here we show that poorly metabolizable, moderately hydrophobic substances with a K(OW) between 100 and 100,000, which do not biomagnify (that is, increase in chemical concentration in organisms with increasing trophic level) in aquatic food webs, can biomagnify to a high degree in food webs containing air-breathing animals (including humans) because of their high octanol-air partition coefficient (K(OA)) and corresponding low rate of respiratory elimination to air. These low K(OW)-high K(OA) chemicals, representing a third of organic chemicals in commercial use, constitute an unidentified class of potentially bioaccumulative substances that require regulatory assessment to prevent possible ecosystem and human-health consequences.
Comment in
-
Ecotoxicology. Canadian study reveals new class of potential POPs.Science. 2007 Jul 13;317(5835):182-3. doi: 10.1126/science.317.5835.182b. Science. 2007. PMID: 17626854 No abstract available.
Similar articles
-
Ecotoxicology. Canadian study reveals new class of potential POPs.Science. 2007 Jul 13;317(5835):182-3. doi: 10.1126/science.317.5835.182b. Science. 2007. PMID: 17626854 No abstract available.
-
Trophic magnification factors: considerations of ecology, ecosystems, and study design.Integr Environ Assess Manag. 2012 Jan;8(1):64-84. doi: 10.1002/ieam.244. Epub 2011 Aug 26. Integr Environ Assess Manag. 2012. PMID: 21674770
-
Increasing levels and biomagnification of persistent organic pollutants (POPs) in Antarctic biota.Mar Pollut Bull. 2004 Feb;48(3-4):295-302. doi: 10.1016/j.marpolbul.2003.08.004. Mar Pollut Bull. 2004. PMID: 14972581
-
Industrial contaminants in Antarctic biota.J Chromatogr A. 2009 Jan 16;1216(3):598-612. doi: 10.1016/j.chroma.2008.08.012. Epub 2008 Aug 12. J Chromatogr A. 2009. PMID: 18723171 Review.
-
Environmental fate and global distribution of polychlorinated biphenyls.Rev Environ Contam Toxicol. 2009;201:137-58. doi: 10.1007/978-1-4419-0032-6_5. Rev Environ Contam Toxicol. 2009. PMID: 19484591 Review.
Cited by
-
Detoxifying carcinogenic polyhalogenated quinones by hydroxamic acids via an unusual double Lossen rearrangement mechanism.Proc Natl Acad Sci U S A. 2010 Nov 30;107(48):20686-90. doi: 10.1073/pnas.1010950107. Epub 2010 Nov 12. Proc Natl Acad Sci U S A. 2010. PMID: 21076034 Free PMC article.
-
TCDD-mediated suppression of the in vitro anti-sheep erythrocyte IgM antibody forming cell response is reversed by interferon-gamma.Toxicol Sci. 2009 Jan;107(1):85-92. doi: 10.1093/toxsci/kfn223. Epub 2008 Oct 22. Toxicol Sci. 2009. PMID: 18948302 Free PMC article.
-
Variation in bioaccumulation of persistent organic pollutants based on octanol-air partitioning: Influence of respiratory elimination in marine species.Mar Pollut Bull. 2015 Nov 15;100(1):122-127. doi: 10.1016/j.marpolbul.2015.09.020. Epub 2015 Oct 4. Mar Pollut Bull. 2015. PMID: 26440545 Free PMC article.
-
Adipose Tissue as a Site of Toxin Accumulation.Compr Physiol. 2017 Sep 12;7(4):1085-1135. doi: 10.1002/cphy.c160038. Compr Physiol. 2017. PMID: 28915320 Free PMC article. Review.
-
The persistent DDT footprint of ocean disposal, and ecological controls on bioaccumulation in fishes.Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2401500121. doi: 10.1073/pnas.2401500121. Epub 2024 Oct 28. Proc Natl Acad Sci U S A. 2024. PMID: 39467121 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources