Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug 31;101(5):465-74.
doi: 10.1161/CIRCRESAHA.107.156976. Epub 2007 Jul 12.

Protein kinase G phosphorylates Cav1.2 alpha1c and beta2 subunits

Affiliations
Free article

Protein kinase G phosphorylates Cav1.2 alpha1c and beta2 subunits

Lin Yang et al. Circ Res. .
Free article

Abstract

Voltage-dependent Ca(2+) channel function (Ca(v)1.2, L-type Ca(2+) channel) is required for cardiac excitation-contraction (E-C) coupling. Ca(v)1.2 plays a key role in modulating cardiac function in response to classic signaling pathways, such as the renin-angiotensin system and sympathetic nervous system. Regulation of cardiac contraction by neurotransmitters and hormones is often correlated with Ca(v)1.2 current through the actions of cAMP and cGMP. Cardiac cGMP, which activates protein kinase G (PKG), is regulated by nitric oxide (NO), and natriuretic peptides. Although PKG has been reported to activate or inhibit Ca(v)1.2 function, it is still unclear whether Ca(v)1.2 subunits are PKG substrates. We have identified phosphorylation sites within the alpha(1c) and beta(2a) subunits that are phosphorylated by PKGIalpha in vitro. We demonstrate that a subset of these phosphorylation sites is modulated, in a cGMP-PKG-specific manner, in intact HEK cells heterologously expressing alpha(1c) and beta(2a) subunits. Using phospho-epitope-specific antibodies, we show that the phosphorylation of these residues is enhanced by PKG in intact cardiac myocytes. Activation of PKG in HEK cells transfected with alpha(1c) and beta(2a) subunits caused an inhibition of Ca(v)1.2 whole-cell current. PKG-mediated inhibition of Ca(v)1.2 current was significantly reduced by coexpression of an alanine-substituted Ca(v)1.2 beta(2a) subunit (Ser(496)). Our results identify a molecular mechanism by which cGMP-PKG regulates Ca(v)1.2 phosphorylation and function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources