Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov 1;85(14):3098-108.
doi: 10.1002/jnr.21417.

Molecular chaperone-mediated tau protein metabolism counteracts the formation of granular tau oligomers in human brain

Affiliations

Molecular chaperone-mediated tau protein metabolism counteracts the formation of granular tau oligomers in human brain

N Sahara et al. J Neurosci Res. .

Abstract

Intracellular accumulation of filamentous tau proteins is a defining feature of neurodegenerative diseases termed tauopathies. The pathogenesis of tauopathies remains largely unknown. Molecular chaperones such as heat shock proteins (HSPs), however, have been implicated in tauopathies as well as in other neurodegenerative diseases characterized by the accumulation of insoluble protein aggregates. To search for in vivo evidence of chaperone-related tau protein metabolism, we analyzed human brains with varying degrees of neurofibrillary tangle (NFT) pathology, as defined by Braak NFT staging. Quantitative analysis of soluble protein levels revealed significant positive correlations between tau and Hsp90, Hsp40, Hsp27, alpha-crystallin, and CHIP. An inverse correlation was observed between the levels of HSPs in each specimen and the levels of granular tau oligomers, the latter of which were isolated from brain as intermediates of tau filaments. We speculate that HSPs function as regulators of soluble tau protein levels, and, once the capacity of this chaperone system is saturated, granular tau oligomers form virtually unabated. This is expressed pathologically as an early sign of NFT formation. The molecular basis of chaperone-mediated protection against neurodegeneration might lead to the development of therapeutics for tauopathies. (c) 2007 Wiley-Liss, Inc.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources