Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution
- PMID: 17630274
- PMCID: PMC1955700
- DOI: 10.1105/tpc.107.052126
Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution
Abstract
In plants, each developmental process integrates a network of signaling events that are regulated by different phytohormones, and interactions among hormonal pathways are essential to modulate their effect. Continuous growth of roots results from the postembryonic activity of cells within the root meristem that is controlled by the coordinated action of several phytohormones, including auxin and ethylene. Although their interaction has been studied intensively, the molecular and cellular mechanisms underlying this interplay are unknown. We show that the effect of ethylene on root growth is largely mediated by the regulation of the auxin biosynthesis and transport-dependent local auxin distribution. Ethylene stimulates auxin biosynthesis and basipetal auxin transport toward the elongation zone, where it activates a local auxin response leading to inhibition of cell elongation. Consistently, in mutants affected in auxin perception or basipetal auxin transport, ethylene cannot activate the auxin response nor regulate the root growth. In addition, ethylene modulates the transcription of several components of the auxin transport machinery. Thus, ethylene achieves a local activation of the auxin signaling pathway and regulates root growth by both stimulating the auxin biosynthesis and by modulating the auxin transport machinery.
Figures
References
-
- Abas, L., Benjamins, R., Malenica, N., Paciorek, T., Wirniewska, J., Moulinier-Anzola, J.C., Sieberer, T., Friml, J., and Luschnig, C. (2006). Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat. Cell Biol. 8 249–256. - PubMed
-
- Abel, S., Nguyen, M.D., Chow, W., and Theologis, A. (1995). ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana: Structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin. J. Biol. Chem. 270: 19093–19099. Erratum. J. Biol. Chem. 270 26020. - PubMed
-
- Benkova, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertova, D., Jürgens, G., and Friml, J. (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115 591–602. - PubMed
-
- Bennett, M.J., Marchant, A., Green, H.G., May, S.T., Ward, S.P., Millner, P.A., Walker, A.R., Schultz, B., and Feldmann, K.A. (1996). Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science 273 948–950. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
