Analysis of a ferric uptake regulator (Fur) mutant of Desulfovibrio vulgaris Hildenborough
- PMID: 17630305
- PMCID: PMC2042090
- DOI: 10.1128/AEM.00276-07
Analysis of a ferric uptake regulator (Fur) mutant of Desulfovibrio vulgaris Hildenborough
Abstract
Previous experiments examining the transcriptional profile of the anaerobe Desulfovibrio vulgaris demonstrated up-regulation of the Fur regulon in response to various environmental stressors. To test the involvement of Fur in the growth response and transcriptional regulation of D. vulgaris, a targeted mutagenesis procedure was used for deleting the fur gene. Growth of the resulting Deltafur mutant (JW707) was not affected by iron availability, but the mutant did exhibit increased sensitivity to nitrite and osmotic stresses compared to the wild type. Transcriptional profiling of JW707 indicated that iron-bound Fur acts as a traditional repressor for ferrous iron uptake genes (feoAB) and other genes containing a predicted Fur binding site within their promoter. Despite the apparent lack of siderophore biosynthesis genes within the D. vulgaris genome, a large 12-gene operon encoding orthologs to TonB and TolQR also appeared to be repressed by iron-bound Fur. While other genes predicted to be involved in iron homeostasis were unaffected by the presence or absence of Fur, alternative expression patterns that could be interpreted as repression or activation by iron-free Fur were observed. Both the physiological and transcriptional data implicate a global regulatory role for Fur in the sulfate-reducing bacterium D. vulgaris.
Figures





Similar articles
-
Transcriptional and proteomic analysis of a ferric uptake regulator (fur) mutant of Shewanella oneidensis: possible involvement of fur in energy metabolism, transcriptional regulation, and oxidative stress.Appl Environ Microbiol. 2002 Feb;68(2):881-92. doi: 10.1128/AEM.68.2.881-892.2002. Appl Environ Microbiol. 2002. PMID: 11823232 Free PMC article.
-
Iron acquisition and regulation in Campylobacter jejuni.J Bacteriol. 2004 Jul;186(14):4714-29. doi: 10.1128/JB.186.14.4714-4729.2004. J Bacteriol. 2004. PMID: 15231804 Free PMC article.
-
Global transcriptional response of Caulobacter crescentus to iron availability.BMC Genomics. 2013 Aug 13;14:549. doi: 10.1186/1471-2164-14-549. BMC Genomics. 2013. PMID: 23941329 Free PMC article.
-
How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events.Biometals. 2007 Jun;20(3-4):587-601. doi: 10.1007/s10534-006-9067-2. Epub 2006 Dec 22. Biometals. 2007. PMID: 17186376 Review.
-
Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria.Front Cell Infect Microbiol. 2013 Oct 2;3:59. doi: 10.3389/fcimb.2013.00059. eCollection 2013. Front Cell Infect Microbiol. 2013. PMID: 24106689 Free PMC article. Review.
Cited by
-
Partial associations of dietary iron, smoking and intestinal bacteria with colorectal cancer risk.Nutr Cancer. 2013;65(2):169-77. doi: 10.1080/01635581.2013.748922. Nutr Cancer. 2013. PMID: 23441604 Free PMC article.
-
The regulatory role of ferric uptake regulator (Fur) during anaerobic respiration of Shewanella piezotolerans WP3.PLoS One. 2013 Oct 4;8(10):e75588. doi: 10.1371/journal.pone.0075588. eCollection 2013. PLoS One. 2013. PMID: 24124499 Free PMC article.
-
Metabolic flexibility of sulfate-reducing bacteria.Front Microbiol. 2011 May 2;2:81. doi: 10.3389/fmicb.2011.00081. eCollection 2011. Front Microbiol. 2011. PMID: 21734907 Free PMC article.
-
Metabolic Exchange and Energetic Coupling between Nutritionally Stressed Bacterial Species: Role of Quorum-Sensing Molecules.mBio. 2021 Jan 19;12(1):e02758-20. doi: 10.1128/mBio.02758-20. mBio. 2021. PMID: 33468690 Free PMC article.
-
Experimental evolution reveals nitrate tolerance mechanisms in Desulfovibrio vulgaris.ISME J. 2020 Nov;14(11):2862-2876. doi: 10.1038/s41396-020-00753-5. Epub 2020 Sep 15. ISME J. 2020. PMID: 32934357 Free PMC article.
References
-
- Andrews, S. C. 1998. Iron storage in bacteria. Adv. Microb. Physiol. 40:281-351. - PubMed
-
- Andrews, S. C., A. K. Robinson, and F. Rodriguez-Quinones. 2003. Bacterial iron homeostasis. FEMS Microbiol. Lett. 27:215-237. - PubMed
-
- Baillon, M.-L. A., A. H. M. van Vliet, J. M. Ketley, C. Constantinidou, and C. W. Penn. 1999. An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni. J. Bacteriol. 181:4798-4804. - PMC - PubMed
-
- Barriere, C., R. Bruckner, D. Centeno, and R. Talon. 2002. Characterisation of the katA gene encoding a catalase and evidence for at least a second catalase activity in Staphylococcus xylosus, bacteria used in food fermentation. FEMS Microbiol. Lett. 216:277-283. - PubMed
-
- Bender, K. S., H.-C. Yen, and J. D. Wall. 2006. Analysing the metabolic capabilities of Desulfovibrio species through genetic manipulation. Biotechnol. Genet. Eng. Rev. 23:157-174. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases