Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Sep;22(5):359-62.
doi: 10.1093/mutage/gem026. Epub 2007 Jul 14.

A comparison of G2 phase radiation-induced chromatid break kinetics using calyculin-PCC with those obtained using colcemid block

Affiliations
Comparative Study

A comparison of G2 phase radiation-induced chromatid break kinetics using calyculin-PCC with those obtained using colcemid block

Peter E Bryant et al. Mutagenesis. 2007 Sep.

Abstract

To study the possible influence of cell-cycle delay on cells reaching mitosis during conventional radiation-induced chromatid break experiments using colcemid as a blocking agent, we have compared the chromatid break kinetics following a single dose of gamma rays (0.75 Gy) in metaphase CHO cells using calyculin-induced premature chromosome condensation (PCC), with those using colcemid block. Calyculin-induced PCC causes very rapid condensation of G2 cell chromosomes without the need for a cell to progress to mitosis, hence eliminating any effect of cell-cycle checkpoint on chromatid break frequency. We found that the kinetics of the exponential first-order decrease in chromatid breaks with time after irradiation was similar (not significantly different) between the two methods of chromosome condensation. However, use of the calyculin-PCC technique resulted in a slightly increased rate of disappearance of chromatid breaks and thus higher frequencies of breaks at 1.5 and 2.5 h following irradiation. We also report on the effect of the nucleoside analogue ara A on chromatid break kinetics using the two chromosome condensation techniques. Ara A treatment of cells abrogated the decrease in chromatid breaks with time, both using the calyculin-PCC and colcemid methods. We conclude that cell-cycle delay may be a factor determining the absolute frequency of chromatid breaks at various times following irradiation of cells in G2 phase but that the first-order disappearance of chromatid breaks with time and its abrogation by ara A are not significantly influenced by the G2 checkpoint.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources