Synaptic background activity influences spatiotemporal integration in single pyramidal cells
- PMID: 1763072
- PMCID: PMC53177
- DOI: 10.1073/pnas.88.24.11569
Synaptic background activity influences spatiotemporal integration in single pyramidal cells
Abstract
The standard one-dimensional Rall cable model assumes that the electrotonic structure of neurons does not change in response to synaptic input. This model is used in a great number of both theoretical and anatomical-physiological structure-function studies. In particular, the membrane time constant, tau m, the somatic input resistance, Rin, and the electrotonic length are used to characterize single cells. However, these studies do not take into account that neurons are embedded in a network of spontaneously active cells. Synapses from these cells will contribute significantly to the membrane conductance, especially if recent evidence of very high specific membrane resistance, Rm = 100 k omega.cm2, is taken into account. We numerically simulated the electrical behavior of an anatomically reconstructed layer V cortical pyramidal cell receiving input from 4000 excitatory and 1000 inhibitory cells firing spontaneously at 0-7 Hz. We found that, over this range of synaptic background activity, tau m and Rin change by a factor of 10 (80-7 msec, 110-14 M omega) and the electrotonic length of the cell changes by a factor of 3. We show that this significantly changes the response of the cell to temporal desynchronized versus temporal synchronized synaptic input distributed throughout the neuron. Thus, the global activity of the network can control how individual cells perform spatial and temporal integration.
Similar articles
-
Effects of inhibition and dendritic saturation in simulated neocortical pyramidal cells.J Neurophysiol. 1994 Jun;71(6):2183-93. doi: 10.1152/jn.1994.71.6.2183. J Neurophysiol. 1994. PMID: 7523612
-
Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo.J Neurophysiol. 1999 Apr;81(4):1531-47. doi: 10.1152/jn.1999.81.4.1531. J Neurophysiol. 1999. PMID: 10200189
-
Visibility of synaptically induced conductance changes: theory and simulations of anatomically characterized cortical pyramidal cells.J Neurosci. 1990 Jun;10(6):1728-44. doi: 10.1523/JNEUROSCI.10-06-01728.1990. J Neurosci. 1990. PMID: 2355247 Free PMC article.
-
The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs.J Neurosci. 1993 Jan;13(1):334-50. doi: 10.1523/JNEUROSCI.13-01-00334.1993. J Neurosci. 1993. PMID: 8423479 Free PMC article. Review.
-
Temporal covariance of postsynaptic membrane potential and synaptic input--role in synaptic efficacy in visual cortex.Prog Brain Res. 1993;95:207-23. doi: 10.1016/s0079-6123(08)60370-2. Prog Brain Res. 1993. PMID: 8493334 Review. No abstract available.
Cited by
-
Pathway-specific properties of AMPA and NMDA-mediated transmission in CA1 hippocampal pyramidal cells.J Neurosci. 2002 Feb 15;22(4):1199-207. doi: 10.1523/JNEUROSCI.22-04-01199.2002. J Neurosci. 2002. PMID: 11850447 Free PMC article.
-
Possible role of cooperative action of NMDA receptor and GABA function in developmental plasticity.J Comput Neurosci. 2010 Apr;28(2):347-59. doi: 10.1007/s10827-010-0212-0. Epub 2010 Jan 27. J Comput Neurosci. 2010. PMID: 20107883
-
Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons.J Comput Neurosci. 2000 May-Jun;8(3):183-208. doi: 10.1023/a:1008925309027. J Comput Neurosci. 2000. PMID: 10809012
-
Pyramidal neuron conductance state gates spike-timing-dependent plasticity.J Neurosci. 2010 Nov 24;30(47):15713-25. doi: 10.1523/JNEUROSCI.3068-10.2010. J Neurosci. 2010. PMID: 21106811 Free PMC article.
-
Linearity and normalization in simple cells of the macaque primary visual cortex.J Neurosci. 1997 Nov 1;17(21):8621-44. doi: 10.1523/JNEUROSCI.17-21-08621.1997. J Neurosci. 1997. PMID: 9334433 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources