Incorporation of regional information in optimal 3-D graph search with application for intraretinal layer segmentation of optical coherence tomography images
- PMID: 17633733
- DOI: 10.1007/978-3-540-73273-0_50
Incorporation of regional information in optimal 3-D graph search with application for intraretinal layer segmentation of optical coherence tomography images
Abstract
We present a method for the incorporation of regional image information in a 3-D graph-theoretic approach for optimal multiple surface segmentation. By transforming the multiple surface segmentation task into finding a minimum-cost closed set in a vertex-weighted graph, the optimal set of feasible surfaces with respect to an objective function can be found. In the past, this family of graph search applications only used objective functions which incorporated "on-surface" costs. Here, novel "in-region" costs are incorporated. Our new approach is applied to the segmentation of seven intraretinal layer surfaces of 24 3-D macular optical coherence tomography images from 12 subjects. Compared to an expert-defined independent standard, unsigned border positioning errors are comparable to the inter-observer variability (7.8 +/- 5.0 microm and 8.1 +/- 3.6 microm, respectively).
Similar articles
-
Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search.IEEE Trans Med Imaging. 2008 Oct;27(10):1495-505. doi: 10.1109/TMI.2008.923966. IEEE Trans Med Imaging. 2008. PMID: 18815101 Free PMC article.
-
Use of varying constraints in optimal 3-D graph search for segmentation of macular optical coherence tomography images.Med Image Comput Comput Assist Interv. 2007;10(Pt 1):244-51. doi: 10.1007/978-3-540-75757-3_30. Med Image Comput Comput Assist Interv. 2007. PMID: 18051065
-
Probabilistic intra-retinal layer segmentation in 3-D OCT images using global shape regularization.Med Image Anal. 2014 Jul;18(5):781-94. doi: 10.1016/j.media.2014.03.004. Epub 2014 Apr 13. Med Image Anal. 2014. PMID: 24835184
-
Exact surface registration of retinal surfaces from 3-D optical coherence tomography images.IEEE Trans Biomed Eng. 2015 Feb;62(2):609-17. doi: 10.1109/TBME.2014.2361778. Epub 2014 Oct 8. IEEE Trans Biomed Eng. 2015. PMID: 25312906
-
Segmentation of the surfaces of the retinal layer from OCT images.Med Image Comput Comput Assist Interv. 2006;9(Pt 1):800-7. doi: 10.1007/11866565_98. Med Image Comput Comput Assist Interv. 2006. PMID: 17354964
Cited by
-
A Digital Staining Algorithm for Optical Coherence Tomography Images of the Optic Nerve Head.Transl Vis Sci Technol. 2017 Feb 2;6(1):8. doi: 10.1167/tvst.6.1.8. eCollection 2017 Feb. Transl Vis Sci Technol. 2017. PMID: 28174676 Free PMC article.
-
Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search.IEEE Trans Med Imaging. 2008 Oct;27(10):1495-505. doi: 10.1109/TMI.2008.923966. IEEE Trans Med Imaging. 2008. PMID: 18815101 Free PMC article.
-
Optimal multiple surface segmentation with shape and context priors.IEEE Trans Med Imaging. 2013 Feb;32(2):376-86. doi: 10.1109/TMI.2012.2227120. Epub 2012 Nov 15. IEEE Trans Med Imaging. 2013. PMID: 23193309 Free PMC article.
-
Efficient algorithms for segmenting globally optimal and smooth multi-surfaces.Inf Process Med Imaging. 2011;22:208-20. doi: 10.1007/978-3-642-22092-0_18. Inf Process Med Imaging. 2011. PMID: 21761658 Free PMC article.
-
Automatic Choroid Layer Segmentation from Optical Coherence Tomography Images Using Deep Learning.Sci Rep. 2019 Feb 28;9(1):3058. doi: 10.1038/s41598-019-39795-x. Sci Rep. 2019. PMID: 30816296 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Other Literature Sources
Miscellaneous