Integrated high-resolution genome-wide analysis of gene dosage and gene expression in human brain tumors
- PMID: 17634618
- DOI: 10.1007/978-1-59745-390-5_12
Integrated high-resolution genome-wide analysis of gene dosage and gene expression in human brain tumors
Abstract
A hallmark genomic feature of human brain tumors is the presence of multiple complex structural and numerical chromosomal aberrations that result in altered gene dosages. These genetic alterations lead to widespread, genome-wide gene expression changes. Both gene expression as well as gene copy number profiles can be assessed on a large scale using microarray methodology. The integration of genetic data with gene expression data provides a particularly effective approach for cancer gene discovery. Utilizing an array of bioinformatics tools, we describe an analysis algorithm that allows for the integration of gene copy number and gene expression profiles as a first-pass means of identifying potential cancer gene targets in human (brain) tumors. This strategy combines circular binary segmentation for the identification of gene copy number alterations, and gene copy number and gene expression data integration with a modification of signal-to-noise ratio computation and random permutation testing. We have evaluated this approach and confirmed its efficacy in the human glioma genome.
Similar articles
-
Integrative genome-wide analysis reveals a robust genomic glioblastoma signature associated with copy number driving changes in gene expression.Genes Chromosomes Cancer. 2009 Jan;48(1):55-68. doi: 10.1002/gcc.20618. Genes Chromosomes Cancer. 2009. PMID: 18828157
-
Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer.BMC Genomics. 2007 Feb 20;8:53. doi: 10.1186/1471-2164-8-53. BMC Genomics. 2007. PMID: 17311676 Free PMC article.
-
Candidate glioblastoma development gene identification using concordance between copy number abnormalities and gene expression level changes.Genes Chromosomes Cancer. 2007 Oct;46(10):875-94. doi: 10.1002/gcc.20474. Genes Chromosomes Cancer. 2007. PMID: 17620294
-
Analysis of comparative genomic hybridization data on cDNA microarrays.Methods Mol Biol. 2007;377:175-86. doi: 10.1007/978-1-59745-390-5_11. Methods Mol Biol. 2007. PMID: 17634617 Review.
-
Microarray-based comparative genomic hybridization (array-CGH) as a useful tool for identifying genes involved in Glioblastoma (GB).Methods Mol Biol. 2010;653:35-45. doi: 10.1007/978-1-60761-759-4_3. Methods Mol Biol. 2010. PMID: 20721736 Review.
Cited by
-
Micro-RNA-128 (miRNA-128) down-regulation in glioblastoma targets ARP5 (ANGPTL6), Bmi-1 and E2F-3a, key regulators of brain cell proliferation.J Neurooncol. 2010 Jul;98(3):297-304. doi: 10.1007/s11060-009-0077-0. Epub 2009 Nov 26. J Neurooncol. 2010. PMID: 19941032
-
Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition.PLoS One. 2014 May 27;9(5):e97681. doi: 10.1371/journal.pone.0097681. eCollection 2014. PLoS One. 2014. PMID: 24866763 Free PMC article.
-
Up-regulation of micro-RNA-221 (miRNA-221; chr Xp11.3) and caspase-3 accompanies down-regulation of the survivin-1 homolog BIRC1 (NAIP) in glioblastoma multiforme (GBM).J Neurooncol. 2009 Jan;91(1):27-32. doi: 10.1007/s11060-008-9688-0. Epub 2008 Aug 31. J Neurooncol. 2009. PMID: 18759060
-
A network model of a cooperative genetic landscape in brain tumors.JAMA. 2009 Jul 15;302(3):261-75. doi: 10.1001/jama.2009.997. JAMA. 2009. PMID: 19602686 Free PMC article.
-
Proteomic analysis of glioma chemoresistance.Curr Neuropharmacol. 2012 Mar;10(1):72-9. doi: 10.2174/157015912799362733. Curr Neuropharmacol. 2012. PMID: 22942880 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical