Tendon and ligament engineering in the adult organism: mesenchymal stem cells and gene-therapeutic approaches
- PMID: 17634943
- PMCID: PMC2266662
- DOI: 10.1007/s00264-007-0395-9
Tendon and ligament engineering in the adult organism: mesenchymal stem cells and gene-therapeutic approaches
Abstract
Tendons and ligaments are elastic collagenous tissues with similar composition and hierarchical structure, contributing to motion. Their strength is related to the number and size of the collagen fibrils. Collagen fibrils increase in size during development and in response to increased physical demands or training. Tendon disorders are commonly seen in clinical practice and give rise to significant morbidity. Treatment is difficult and patients often suffer from the symptoms for quite a long time. Despite remodelling, the biochemical and mechanical properties of healed tendon tissue never match those of intact tendon. The prerequisite for focussed treatment strategies in the future will be an improved understanding of the molecular events both in the embryo and contributing to regeneration in the adult organism. Novel approaches include the local delivery of growth factors, stem- and tendon-cell-derived therapy, the application of mechanical load and gene-therapeutic approaches based on vehicles encoding selected factors, or combinations of these. Important factors are proteins of the extracellular matrix like the metalloproteinases, growth factors like the bone morphogenetic proteins but also intracellular signalling mediator proteins, such as the Smads and transcription factors from the helix-loop-helix and other families. In this review, we focus specifically on such molecular approaches based on mesenchymal stem cells.
Les tendons et les ligaments sont constitués de fibres élastiques de collagène dont la composition est similaire de même que leur structure contribuant au mouvement. Leur résistance est parallèle au nombre et à la taille des fibres collagènes. Si les fibres collagènes grossissent durant la croissance, il en est de même en réponse à une augmentation de l’entraînement physique. A titre clinique on rencontre relativement fréquemment les problèmes tendineux responsables d’une certaine morbidité. Le traitement en est difficile, les patients sont affectés sur un temps relativement long de troubles secondaires à ces lésions. En dépit du remodelage, les propriétés biomécaniques et biochimiques d’un tendon, d’un tissu tendineux guéri ne peuvent être comparés à ceux d’un tendon sain. Les prérequis d’une stratégie thérapeutique devrait, dans le futur, permettre de mieux comprendre ce qui se passe au moment du développement embryologique et de la régénération au niveau de l’organisme adulte. Une nouvelle approche thérapeutique doit prendre en compte l’administration de facteurs de croissance et l’utilisation de cellules souche dans le cadre d’une thérapie génique. Les facteurs importants sont les protéines de la matrice extracellulaire comme les métalloprotéinases de même que les facteurs de croissance de type BMP mais il faut prendre en compte également les facteurs de transcriptions chromosomiques. Pour cette étude, nous nous sommes spécialement centrés sur de telles molécules et sur les cellules souches mesenchymenteuses.
Figures


Similar articles
-
Tendon and ligament engineering: from cell biology to in vivo application.Regen Med. 2006 Jul;1(4):563-74. doi: 10.2217/17460751.1.4.563. Regen Med. 2006. PMID: 17465850 Review.
-
Therapeutic strategies for tendon healing based on novel biomaterials, factors and cells.Pathobiology. 2013;80(4):203-10. doi: 10.1159/000347059. Epub 2013 May 6. Pathobiology. 2013. PMID: 23652284 Review.
-
Sources of adult mesenchymal stem cells for ligament and tendon tissue engineering.Curr Stem Cell Res Ther. 2015;10(1):26-30. doi: 10.2174/1574888x09666140710102808. Curr Stem Cell Res Ther. 2015. PMID: 25012740 Review.
-
Stem cells for tendon and ligament tissue engineering and regeneration.J Stem Cells. 2010;5(4):187-94. J Stem Cells. 2010. PMID: 22314867 Review.
-
A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells.Biomaterials. 2010 Apr;31(11):2990-8. doi: 10.1016/j.biomaterials.2010.01.004. Epub 2010 Jan 25. Biomaterials. 2010. PMID: 20089300
Cited by
-
Does the A9285G Polymorphism in Collagen Type XII α1 Gene Associate with the Risk of Anterior Cruciate Ligament Ruptures?Balkan J Med Genet. 2014 Dec 11;17(1):41-6. doi: 10.2478/bjmg-2014-0022. eCollection 2014 Jun. Balkan J Med Genet. 2014. PMID: 25741214 Free PMC article.
-
ACL injury management: a comprehensive review of novel biotherapeutics.Front Bioeng Biotechnol. 2024 Nov 22;12:1455225. doi: 10.3389/fbioe.2024.1455225. eCollection 2024. Front Bioeng Biotechnol. 2024. PMID: 39650235 Free PMC article. Review.
-
Collagen fibre arrangement and functional crimping pattern of the medial collateral ligament in the rat knee.Knee Surg Sports Traumatol Arthrosc. 2010 Dec;18(12):1671-8. doi: 10.1007/s00167-010-1084-6. Epub 2010 Feb 25. Knee Surg Sports Traumatol Arthrosc. 2010. PMID: 20182866
-
The genetics of sports injuries and athletic performance.Muscles Ligaments Tendons J. 2013 Aug 11;3(3):173-89. Muscles Ligaments Tendons J. 2013. PMID: 24367777 Free PMC article. Review.
-
Ligament Tissue Engineering Using a Novel Porous Polycaprolactone Fumarate Scaffold and Adipose Tissue-Derived Mesenchymal Stem Cells Grown in Platelet Lysate.Tissue Eng Part A. 2015 Nov;21(21-22):2703-13. doi: 10.1089/ten.TEA.2015.0183. Tissue Eng Part A. 2015. PMID: 26413793 Free PMC article.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10191749', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10191749/'}]}
- Aspenberg P, Forslund C (1999) Enhanced tendon healing with GDF 5 and 6. Acta Orthop Scand 70:51–54 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0736-0266(02)00163-8', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0736-0266(02)00163-8'}, {'type': 'PubMed', 'value': '12706014', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12706014/'}]}
- Awad HA, Boivin GP, Dressler MR et al (2003) Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res 21:420–431 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1089/ten.1999.5.267', 'is_inner': False, 'url': 'https://doi.org/10.1089/ten.1999.5.267'}, {'type': 'PubMed', 'value': '10434073', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10434073/'}]}
- Awad HA, Butler DL, Boivin GP et al (1999) Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng 5:267–277 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/(SICI)1097-4636(200008)51:2<233::AID-JBM12>3.0.CO;2-B', 'is_inner': False, 'url': 'https://doi.org/10.1002/(sici)1097-4636(200008)51:2<233::aid-jbm12>3.0.co;2-b'}, {'type': 'PubMed', 'value': '10825223', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10825223/'}]}
- Awad HA, Butler DL, Harris MT et al (2000) In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: effects of initial seeding density on contraction kinetics. J Biomed Mater Res 51:233–240 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/jor.1100140509', 'is_inner': False, 'url': 'https://doi.org/10.1002/jor.1100140509'}, {'type': 'PubMed', 'value': '8893766', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/8893766/'}]}
- Batten ML, Hansen JC, Dahners LE (1996) Influence of dosage and timing of application of platelet-derived growth factor on early healing of the rat medial collateral ligament. J Orthop Res 14:736–741 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources