Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar 15;84(4):856-68.
doi: 10.1002/jbm.a.31383.

Effect of rapidly resorbable bone substitute materials on the temporal expression of the osteoblastic phenotype in vitro

Affiliations

Effect of rapidly resorbable bone substitute materials on the temporal expression of the osteoblastic phenotype in vitro

C Knabe et al. J Biomed Mater Res A. .

Abstract

Ideally, bioactive ceramics for use in alveolar ridge augmentation should possess the ability to activate bone formation and, thus, cause the differentiation of osteoprogenitor cells into osteoblasts at their surfaces. Therefore, in order to evaluate the osteogenic potential of novel bone substitute materials, it is important to examine their effect on osteoblastic differentiation. This study examines the effect of rapidly resorbable calcium-alkali-orthophosphates on osteoblastic phenotype expression and compares this behavior to that of beta-tricalcium phosphate (TCP) and bioactive glass 45S5. Test materials were three materials (denominated GB14, GB9, GB9/25) with a crystalline phase Ca(2)KNa(PO(4))(2) and with a small amorphous portion containing either magnesium potassium phosphate (GB14) or silica phosphate (GB9 and GB9/25, which also contains Ca(2)P(2)O(7)); and a material with a novel crystalline phase Ca(10)[K/Na](PO(4))(7) (material denominated 352i). SaOS-2 human bone cells were grown on the substrata for 3, 7, 14, and 21 days, counted, and probed for an array of osteogenic markers. GB9 had the greatest stimulatory effect on osteoblastic proliferation and differentiation, suggesting that this material possesses the highest potency to enhance osteogenesis. GB14 and 352i supported osteoblast differentiation to the same or a higher degree than TCP, whereas, similar to bioactive glass 45S5, GB9/25 displayed a greater stimulatory effect on osteoblastic phenotype expression, indicating that GB9/25 is also an excellent material for promoting osteogenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources