Molecular characterization of the Aedes aegypti odorant receptor gene family
- PMID: 17635615
- PMCID: PMC3100214
- DOI: 10.1111/j.1365-2583.2007.00748.x
Molecular characterization of the Aedes aegypti odorant receptor gene family
Abstract
The olfactory-driven blood-feeding behaviour of female Aedes aegypti mosquitoes is the primary transmission mechanism by which the arboviruses causing dengue and yellow fevers affect over 40 million individuals worldwide. Bioinformatics analysis has been used to identify 131 putative odourant receptors from the A. aegypti genome that are likely to function in chemosensory perception in this mosquito. Comparison with the Anopheles gambiae olfactory subgenome demonstrates significant divergence of the odourant receptors that reflects a high degree of evolutionary activity potentially resulting from their critical roles during the mosquito life cycle. Expression analyses in the larval and adult olfactory chemosensory organs reveal that the ratio of odourant receptors to antennal glomeruli is not necessarily one to one in mosquitoes.
Figures




Similar articles
-
Chitosan/siRNA nanoparticle targeting demonstrates a requirement for single-minded during larval and pupal olfactory system development of the vector mosquito Aedes aegypti.BMC Dev Biol. 2014 Feb 19;14:9. doi: 10.1186/1471-213X-14-9. BMC Dev Biol. 2014. PMID: 24552425 Free PMC article.
-
Isolation of cDNA clones encoding putative odourant binding proteins from the antennae of the malaria-transmitting mosquito, Anopheles gambiae.Insect Mol Biol. 2002 Apr;11(2):123-32. doi: 10.1046/j.1365-2583.2002.00316.x. Insect Mol Biol. 2002. PMID: 11966877
-
Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti: genome annotation and comparative analyses.Insect Mol Biol. 2008 Apr;17(2):147-63. doi: 10.1111/j.1365-2583.2007.00789.x. Insect Mol Biol. 2008. PMID: 18353104
-
The Aedes aegypti genome: a comparative perspective.Insect Mol Biol. 2008 Feb;17(1):1-8. doi: 10.1111/j.1365-2583.2008.00772.x. Insect Mol Biol. 2008. PMID: 18237279 Review.
-
Progress in mapping the yellow fever mosquito genome.Tsitologiia. 2013;55(4):241-3. Tsitologiia. 2013. PMID: 23875456 Review.
Cited by
-
A review of chemosensation and related behavior in aquatic insects.J Insect Sci. 2011;11:62. doi: 10.1673/031.011.6201. J Insect Sci. 2011. PMID: 21864156 Free PMC article. Review.
-
Olfactory receptors: G protein-coupled receptors and beyond.J Neurochem. 2009 Jun;109(6):1570-83. doi: 10.1111/j.1471-4159.2009.06085.x. Epub 2009 Apr 4. J Neurochem. 2009. PMID: 19383089 Free PMC article. Review.
-
Expansion and Accelerated Evolution of 9-Exon Odorant Receptors in Polistes Paper Wasps.Mol Biol Evol. 2021 Aug 23;38(9):3832-3846. doi: 10.1093/molbev/msab023. Mol Biol Evol. 2021. PMID: 34151983 Free PMC article.
-
Structure modelling of odorant receptor from Aedes aegypti and identification of potential repellent molecules.Comput Struct Biotechnol J. 2023 Mar 6;21:2204-2214. doi: 10.1016/j.csbj.2023.03.005. eCollection 2023. Comput Struct Biotechnol J. 2023. PMID: 37013002 Free PMC article.
-
Molecular and functional characterization of the odorant receptor2 (OR2) in the tiger mosquito Aedes albopictus.PLoS One. 2012;7(5):e36538. doi: 10.1371/journal.pone.0036538. Epub 2012 May 14. PLoS One. 2012. PMID: 22606270 Free PMC article.
References
-
- Ache BW, Young JM. Olfaction: diverse species, conserved principles. Neuron. 2005;48:417–430. - PubMed
-
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. - PubMed
-
- Berger J, Suzuki T, Senti KA, Stubbs J, Schaffner G, Dickson BJ. Genetic mapping with snp markers in Drosophila. Nat Genet. 2001;29:475–481. - PubMed
-
- Buck L, Axel R. A novel mulitgene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991;65:175–187. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources