Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Aug-Sep;66(2-3):228-37.
doi: 10.1111/j.1365-3083.2007.01979.x.

Allosteric changes in the TCR/CD3 structure upon interaction with extra- or intra-cellular ligands

Affiliations
Free article
Comparative Study

Allosteric changes in the TCR/CD3 structure upon interaction with extra- or intra-cellular ligands

B Rubin et al. Scand J Immunol. 2007 Aug-Sep.
Free article

Abstract

T lymphocytes are activated by the interaction between the T-cell antigen receptor (TCR) and peptides presented by major histocompatibility complex (MHC) molecules. The avidity of this TCR-pMHC interaction is very low. Therefore, several hypotheses have been put forward to explain how T cells become specifically activated despite this handicap: conformational change model, aggregation model, kinetic segregation model, sequential interaction model and permissive geometry model. In the present paper, we conducted experiments to distinguish between the TCR-aggregation model and the TCR-conformational change model. The results obtained using a TCR capture ELISA with Brij 98-solubilized TCR molecules from normal or activated T cells showed that the ligand-TCR interaction causes structural changes in the CD3 epsilon cytoplasmic tail as well as in the extracellular TCR beta FG loop region. Size-fractionation experiments with Brij 98-solubilized TCR/CD3/co-receptor complexes from naïve or activated CD4(+) or CD8(+) T cells demonstrated that such complexes are found as either dimers or tetramers. No monomers or multimers were detected. We propose that: (1) ligand-TCR interaction results in conformational changes in the CD3 epsilon cytoplasmic tail leading to T-cell activation; (2) CD3 epsilon cytoplasmic tail interaction with intracellular proteins may dissociate pMHC and co-receptors (CD4 or CD8) from TCR/CD3 complexes, thus leading to the arrest of T-cell activation; and (3) T-cell activation appears to occur among dimers or tetramers of TCR/CD3/co-receptor complexes interacting with self and non-self (foreign) peptide-MHC complexes.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources