Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Aug 15;79(16):6255-63.
doi: 10.1021/ac0703956. Epub 2007 Jul 17.

Performance of SU-8 microchips as separation devices and comparison with glass microchips

Affiliations
Comparative Study

Performance of SU-8 microchips as separation devices and comparison with glass microchips

Tiina Sikanen et al. Anal Chem. .

Abstract

Effective analytical performance of native, all-SU-8 separation microdevices is addressed by comparing their performance to commercial glass microdevices in microchip zone electrophoresis accompanied by fluorescence detection. Surface chemistry and optical properties of SU-8 microdevices are also examined. SU-8 was shown to exhibit repeatable electroosmotic properties in a wide variety of buffers, and SU-8 microchannels were successfully utilized in peptide and protein analyses without any modification of the native polymer surface. Selected, fluorescent labeled, biologically active peptides were baseline resolved with migration time repeatability of 2.3-3.6% and plate numbers of 112,900-179,800 m(-1). Addition of SDS (0.1%) or SU-8 developer (1.0%) to the separation buffer also enabled protein analysis by capillary zone electrophoresis. Plate heights of 2.4-5.9 microm were obtained for fluorescent labeled bovine serum albumin. In addition, detection sensitivity through SU-8 microchannels was similar to that through BoroFloat glass, when fluorescence illumination was provided at visible wavelengths higher than 500 nm. On the whole, the analytical performance of SU-8 microchips was very good and fairly comparable to that of commercial glass chips as well as that of traditional capillary electrophoresis and chromatographic methods. Moreover, lithography-based patterning of SU-8 enables straightforward integration of multiple functions on a single chip and favors fully microfabricated lab-on-a-chip systems.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources