Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug 9;111(31):9330-6.
doi: 10.1021/jp071969d. Epub 2007 Jul 17.

Contrasting nonaqueous against aqueous solvation on the basis of scaled-particle theory

Affiliations

Contrasting nonaqueous against aqueous solvation on the basis of scaled-particle theory

Henry S Ashbaugh et al. J Phys Chem B. .

Abstract

Normal hexane is adopted as a typical organic solvent for comparison with liquid water in modern theories of hydrophobic hydration, and detailed results are worked-out here for the C-atom density in contact with a hard-sphere solute, rhoCG(R), for the full range of solute radii. The intramolecular structure of an n-hexane molecule introduces qualitative changes in G(R) compared to scaled-particle models for liquid water. Also worked-out is a revised scaled-particle model implemented with molecular simulation results for liquid n-hexane. The classic scaled-particle model, acknowledging the intramolecular structure of an n-hexane molecule, is in qualitative agreement with the revised scaled-particle model results, and is consistent in sizing the methyl/methylene sites which compose n-hexane in the simulation model. The classic and revised scaled-particle models disagree for length scales greater than the radius of a methyl group, however. The liquid-vapor surface tension of n-hexane predicted by the classic scaled-particle model is too large, though the temperature variation is reasonable; this contrasts with the classic scaled-particle theory for water which predicts a reasonable magnitude of the water liquid-vapor surface tension, but an incorrect sign for the temperature derivative at moderate temperatures. Judging on the basis of the arbitrary condition that drying is indicated when G(R)<1, hard spheres dry at smaller sizes in n-hexane than in liquid water.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources