Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec 6;26(55):7628-36.
doi: 10.1038/sj.onc.1210576. Epub 2007 Jul 16.

A novel role of Rac1 GTPase in JCV T-antigen-mediated beta-catenin stabilization

Affiliations

A novel role of Rac1 GTPase in JCV T-antigen-mediated beta-catenin stabilization

R Bhattacharyya et al. Oncogene. .

Abstract

Wnt signaling follows canonical and non-canonical pathways to regulate a variety of processes during cellular homeostasis and development. The large T-antigen (T-Ag) of the human neurotropic JC virus, has been shown to modulate the Wnt-signaling pathway via interaction with beta-catenin, one of the most important components of the canonical Wnt pathway. Here, we have identified an alternative non-canonical pathway that allows T-Ag to recruit Rac1 for stabilizing beta-catenin by inhibiting its ubiquitin-dependent proteasomal degradation. We demonstrate that inhibition of Rac1 by its dominant negative mutant, RacN17, abrogates T-Ag-mediated stabilization of beta-catenin yet exhibits no impact on the transcriptional activity of beta-catenin. Results from immunocytochemistry revealed that together with T-Ag, a pool of beta-catenin appears at the cell surface, particularly at the membrane ruffles where active Rac1 is positioned. Interestingly, cooperativity between T-Ag and beta-catenin leads to activation of Rac1, which in turn, stimulates its association with beta-catenin. These observations unravel the interplay between beta-catenin and Rac1 that is initiated by T-Ag and results in stabilization of beta-catenin and its presence in cell membrane ruffles.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms