Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct;85(13):2971-80.
doi: 10.1002/jnr.21415.

Increase in diazepam binding inhibitor expression by sustained morphine exposure is mediated via mu-opioid receptors in primary cultures of mouse cerebral cortical neurons

Affiliations

Increase in diazepam binding inhibitor expression by sustained morphine exposure is mediated via mu-opioid receptors in primary cultures of mouse cerebral cortical neurons

Masahiro Shibasaki et al. J Neurosci Res. 2007 Oct.

Abstract

Our previous in vivo experiment demonstrates that chronic morphine treatment up-regulates diazepam binding inhibitor (DBI) transcripts in mouse cerebral cortex, although detailed mechanisms were unclear (Katsura et al. [1998] J. Neurochem. 71:2638-2641). This study sought to elucidate the precise mechanisms of DBI mRNA up-regulation by long-term treatment with morphine using primary cultures of mouse cerebral cortical neurons. A significant increase in DBI mRNA was observed after sustained exposure to 0.3 microM morphine for 2 days, and the maximal expression occurred after 2 days of exposure, whereas transient exposure to 0.3 microM morphine for 15 min, 1 hr, and 3 hr produced no changes in the expression. Continuous exposure to DAMGO also significantly increased DBI mRNA expression, which was completely abolished by a selective antagonist of mu-opioid receptors, beta-funaltrexamine (beta-FNA). The morphine-induced increase in DBI mRNA expression and its content were completely inhibited by naloxone and beta-FNA, and the inhibitory potential of naloxonazine was about half that of beta-FNA. On the other hand, kappa- and delta-opioid receptor antagonists showed no effects on the morphine-induced increase in DBI mRNA. In addition, both a calmodulin antagonist and a CaM II kinase inhibitor significantly suppressed the morphine-induced increase in DBI mRNA. These results indicate that the increase in DBI expression is induced by continuous activation of mu-opioid receptors but not of kappa- and delta-opioid receptors and is regulated by the calcium/calmodulin-related phosphorylation system.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

LinkOut - more resources