Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep;51(9):3247-53.
doi: 10.1128/AAC.00072-07. Epub 2007 Jul 16.

Cloning, nucleotide sequencing, and analysis of the AcrAB-TolC efflux pump of Enterobacter cloacae and determination of its involvement in antibiotic resistance in a clinical isolate

Affiliations

Cloning, nucleotide sequencing, and analysis of the AcrAB-TolC efflux pump of Enterobacter cloacae and determination of its involvement in antibiotic resistance in a clinical isolate

Astrid Pérez et al. Antimicrob Agents Chemother. 2007 Sep.

Abstract

Enterobacter cloacae is an emerging clinical pathogen that may be responsible for nosocomial infections. Management of these infections is often difficult, owing to the high frequency of strains that are resistant to disinfectants and antimicrobial agents in the clinical setting. Multidrug efflux pumps, especially those belonging to the resistance-nodulation-division family, play a major role as a mechanism of antimicrobial resistance in gram-negative pathogens. In the present study, we cloned and sequenced the genes encoding an AcrAcB-TolC-like efflux pump from an E. cloacae clinical isolate (isolate EcDC64) showing a broad antibiotic resistance profile. Sequence analysis showed that the acrR, acrA, acrB, and tolC genes encode proteins that display 79.8%, 84%, 88%, and 82% amino acid identities with the respective homologues of Enterobacter aerogenes and are arranged in a similar pattern. Deletion of the acrA gene to yield an AcrA-deficient EcDC64 mutant (EcDeltaacrA) showed the involvement of AcrAB-TolC in multidrug resistance in E. cloacae. However, experiments with an efflux pump inhibitor suggested that additional efflux systems also play a role in antibiotic resistance. Investigation of several unrelated isolates of E. cloacae by PCR analysis revealed that the AcrAB system is apparently ubiquitous in this species.

PubMed Disclaimer

References

    1. Baucheron, S., S. Tyler, D. Boyd, M. R. Mulvey, E. Chaslus-Dancla, and A. Cloeckaert. 2004. AcrAB-TolC directs efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium DT104. Antimicrob. Agents Chemother. 48:3729-3735. - PMC - PubMed
    1. Berlanga, M., J. L. Vazquez, J. Hernandez-Borrell, M. T. Montero, and M. Vinas. 2000. Evidence of an efflux pump in Serratia marcescens. Microb. Drug Resist. 6:111-117. - PubMed
    1. Canle, D., M. Cartelle, C. Latasa, I. Lasa, R. Villanueva, and G. Bou. 2005. Abstr. 45th Intersci. Conf. Antimicrob. Agents Chemother., abstr. C1-1035.
    1. Chang, A. C. Y., and S. N. Cohen. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134:1141-1156. - PMC - PubMed
    1. Chaveroche, M. K., J. M. Ghigo, and C. d'Enfert. 2000. A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res. 28:e97. - PMC - PubMed

Publication types

MeSH terms

Associated data